diff options
author | rodri <rgl@antares-labs.eu> | 2023-01-29 23:11:05 +0000 |
---|---|---|
committer | rodri <rgl@antares-labs.eu> | 2023-01-29 23:11:05 +0000 |
commit | a5c6374b77610cb2bcb794551475e092d990ef8b (patch) | |
tree | 9fc77cf42281a02fbc545afead9be30206b2bd32 /sys/src/libgeometry | |
parent | 08a080e8c2c775eda149d3e830bd4fad2c35f249 (diff) |
libgeometry revamp
Diffstat (limited to 'sys/src/libgeometry')
-rw-r--r-- | sys/src/libgeometry/arith3.c | 215 | ||||
-rw-r--r-- | sys/src/libgeometry/fmt.c | 28 | ||||
-rw-r--r-- | sys/src/libgeometry/matrix.c | 440 | ||||
-rw-r--r-- | sys/src/libgeometry/mkfile | 19 | ||||
-rw-r--r-- | sys/src/libgeometry/point.c | 200 | ||||
-rw-r--r-- | sys/src/libgeometry/qball.c | 65 | ||||
-rw-r--r-- | sys/src/libgeometry/quaternion.c | 314 | ||||
-rw-r--r-- | sys/src/libgeometry/rframe.c | 51 | ||||
-rw-r--r-- | sys/src/libgeometry/transform.c | 75 | ||||
-rw-r--r-- | sys/src/libgeometry/triangle.c | 40 | ||||
-rw-r--r-- | sys/src/libgeometry/tstack.c | 169 | ||||
-rw-r--r-- | sys/src/libgeometry/utils.c | 15 |
12 files changed, 774 insertions, 857 deletions
diff --git a/sys/src/libgeometry/arith3.c b/sys/src/libgeometry/arith3.c deleted file mode 100644 index 8ab1755e6..000000000 --- a/sys/src/libgeometry/arith3.c +++ /dev/null @@ -1,215 +0,0 @@ -#include <u.h> -#include <libc.h> -#include <draw.h> -#include <geometry.h> -/* - * Routines whose names end in 3 work on points in Affine 3-space. - * They ignore w in all arguments and produce w=1 in all results. - * Routines whose names end in 4 work on points in Projective 3-space. - */ -Point3 add3(Point3 a, Point3 b){ - a.x+=b.x; - a.y+=b.y; - a.z+=b.z; - a.w=1.; - return a; -} -Point3 sub3(Point3 a, Point3 b){ - a.x-=b.x; - a.y-=b.y; - a.z-=b.z; - a.w=1.; - return a; -} -Point3 neg3(Point3 a){ - a.x=-a.x; - a.y=-a.y; - a.z=-a.z; - a.w=1.; - return a; -} -Point3 div3(Point3 a, double b){ - a.x/=b; - a.y/=b; - a.z/=b; - a.w=1.; - return a; -} -Point3 mul3(Point3 a, double b){ - a.x*=b; - a.y*=b; - a.z*=b; - a.w=1.; - return a; -} -int eqpt3(Point3 p, Point3 q){ - return p.x==q.x && p.y==q.y && p.z==q.z; -} -/* - * Are these points closer than eps, in a relative sense - */ -int closept3(Point3 p, Point3 q, double eps){ - return 2.*dist3(p, q)<eps*(len3(p)+len3(q)); -} -double dot3(Point3 p, Point3 q){ - return p.x*q.x+p.y*q.y+p.z*q.z; -} -Point3 cross3(Point3 p, Point3 q){ - Point3 r; - r.x=p.y*q.z-p.z*q.y; - r.y=p.z*q.x-p.x*q.z; - r.z=p.x*q.y-p.y*q.x; - r.w=1.; - return r; -} -double len3(Point3 p){ - return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); -} -double dist3(Point3 p, Point3 q){ - p.x-=q.x; - p.y-=q.y; - p.z-=q.z; - return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); -} -Point3 unit3(Point3 p){ - double len=sqrt(p.x*p.x+p.y*p.y+p.z*p.z); - p.x/=len; - p.y/=len; - p.z/=len; - p.w=1.; - return p; -} -Point3 midpt3(Point3 p, Point3 q){ - p.x=.5*(p.x+q.x); - p.y=.5*(p.y+q.y); - p.z=.5*(p.z+q.z); - p.w=1.; - return p; -} -Point3 lerp3(Point3 p, Point3 q, double alpha){ - p.x+=(q.x-p.x)*alpha; - p.y+=(q.y-p.y)*alpha; - p.z+=(q.z-p.z)*alpha; - p.w=1.; - return p; -} -/* - * Reflect point p in the line joining p0 and p1 - */ -Point3 reflect3(Point3 p, Point3 p0, Point3 p1){ - Point3 a, b; - a=sub3(p, p0); - b=sub3(p1, p0); - return add3(a, mul3(b, 2*dot3(a, b)/dot3(b, b))); -} -/* - * Return the nearest point on segment [p0,p1] to point testp - */ -Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp){ - double num, den; - Point3 q, r; - q=sub3(p1, p0); - r=sub3(testp, p0); - num=dot3(q, r);; - if(num<=0) return p0; - den=dot3(q, q); - if(num>=den) return p1; - return add3(p0, mul3(q, num/den)); -} -/* - * distance from point p to segment [p0,p1] - */ -#define SMALL 1e-8 /* what should this value be? */ -double pldist3(Point3 p, Point3 p0, Point3 p1){ - Point3 d, e; - double dd, de, dsq; - d=sub3(p1, p0); - e=sub3(p, p0); - dd=dot3(d, d); - de=dot3(d, e); - if(dd<SMALL*SMALL) return len3(e); - dsq=dot3(e, e)-de*de/dd; - if(dsq<SMALL*SMALL) return 0; - return sqrt(dsq); -} -/* - * vdiv3(a, b) is the magnitude of the projection of a onto b - * measured in units of the length of b. - * vrem3(a, b) is the component of a perpendicular to b. - */ -double vdiv3(Point3 a, Point3 b){ - return (a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z); -} -Point3 vrem3(Point3 a, Point3 b){ - double quo=(a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z); - a.x-=b.x*quo; - a.y-=b.y*quo; - a.z-=b.z*quo; - a.w=1.; - return a; -} -/* - * Compute face (plane) with given normal, containing a given point - */ -Point3 pn2f3(Point3 p, Point3 n){ - n.w=-dot3(p, n); - return n; -} -/* - * Compute face containing three points - */ -Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2){ - Point3 p01, p02; - p01=sub3(p1, p0); - p02=sub3(p2, p0); - return pn2f3(p0, cross3(p01, p02)); -} -/* - * Compute point common to three faces. - * Cramer's rule, yuk. - */ -Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2){ - double det; - Point3 p; - det=dot3(f0, cross3(f1, f2)); - if(fabs(det)<SMALL){ /* parallel planes, bogus answer */ - p.x=0.; - p.y=0.; - p.z=0.; - p.w=0.; - return p; - } - p.x=(f0.w*(f2.y*f1.z-f1.y*f2.z) - +f1.w*(f0.y*f2.z-f2.y*f0.z)+f2.w*(f1.y*f0.z-f0.y*f1.z))/det; - p.y=(f0.w*(f2.z*f1.x-f1.z*f2.x) - +f1.w*(f0.z*f2.x-f2.z*f0.x)+f2.w*(f1.z*f0.x-f0.z*f1.x))/det; - p.z=(f0.w*(f2.x*f1.y-f1.x*f2.y) - +f1.w*(f0.x*f2.y-f2.x*f0.y)+f2.w*(f1.x*f0.y-f0.x*f1.y))/det; - p.w=1.; - return p; -} -/* - * pdiv4 does perspective division to convert a projective point to affine coordinates. - */ -Point3 pdiv4(Point3 a){ - if(a.w==0) return a; - a.x/=a.w; - a.y/=a.w; - a.z/=a.w; - a.w=1.; - return a; -} -Point3 add4(Point3 a, Point3 b){ - a.x+=b.x; - a.y+=b.y; - a.z+=b.z; - a.w+=b.w; - return a; -} -Point3 sub4(Point3 a, Point3 b){ - a.x-=b.x; - a.y-=b.y; - a.z-=b.z; - a.w-=b.w; - return a; -} diff --git a/sys/src/libgeometry/fmt.c b/sys/src/libgeometry/fmt.c new file mode 100644 index 000000000..359b4ba60 --- /dev/null +++ b/sys/src/libgeometry/fmt.c @@ -0,0 +1,28 @@ +#include <u.h> +#include <libc.h> +#include <geometry.h> + +int +vfmt(Fmt *f) +{ + Point2 p; + + p = va_arg(f->args, Point2); + return fmtprint(f, "[%g %g %g]", p.x, p.y, p.w); +} + +int +Vfmt(Fmt *f) +{ + Point3 p; + + p = va_arg(f->args, Point3); + return fmtprint(f, "[%g %g %g %g]", p.x, p.y, p.z, p.w); +} + +void +GEOMfmtinstall(void) +{ + fmtinstall('v', vfmt); + fmtinstall('V', Vfmt); +} diff --git a/sys/src/libgeometry/matrix.c b/sys/src/libgeometry/matrix.c index cf7a6c152..d640403a7 100644 --- a/sys/src/libgeometry/matrix.c +++ b/sys/src/libgeometry/matrix.c @@ -1,106 +1,348 @@ -/* - * ident(m) store identity matrix in m - * matmul(a, b) matrix multiply a*=b - * matmulr(a, b) matrix multiply a=b*a - * determinant(m) returns det(m) - * adjoint(m, minv) minv=adj(m) - * invertmat(m, minv) invert matrix m, result in minv, returns det(m) - * if m is singular, minv=adj(m) - */ #include <u.h> #include <libc.h> -#include <draw.h> #include <geometry.h> -void ident(Matrix m){ - register double *s=&m[0][0]; - *s++=1;*s++=0;*s++=0;*s++=0; - *s++=0;*s++=1;*s++=0;*s++=0; - *s++=0;*s++=0;*s++=1;*s++=0; - *s++=0;*s++=0;*s++=0;*s=1; -} -void matmul(Matrix a, Matrix b){ - register i, j, k; - double sum; + +/* 2D */ + +void +identity(Matrix m) +{ + memset(m, 0, 3*3*sizeof(double)); + m[0][0] = m[1][1] = m[2][2] = 1; +} + +void +addm(Matrix a, Matrix b) +{ + int i, j; + + for(i = 0; i < 3; i++) + for(j = 0; j < 3; j++) + a[i][j] += b[i][j]; +} + +void +subm(Matrix a, Matrix b) +{ + int i, j; + + for(i = 0; i < 3; i++) + for(j = 0; j < 3; j++) + a[i][j] -= b[i][j]; +} + +void +mulm(Matrix a, Matrix b) +{ + int i, j, k; Matrix tmp; - for(i=0;i!=4;i++) for(j=0;j!=4;j++){ - sum=0; - for(k=0;k!=4;k++) - sum+=a[i][k]*b[k][j]; - tmp[i][j]=sum; - } - for(i=0;i!=4;i++) for(j=0;j!=4;j++) - a[i][j]=tmp[i][j]; -} -void matmulr(Matrix a, Matrix b){ - register i, j, k; - double sum; + + for(i = 0; i < 3; i++) + for(j = 0; j < 3; j++){ + tmp[i][j] = 0; + for(k = 0; k < 3; k++) + tmp[i][j] += a[i][k]*b[k][j]; + } + memmove(a, tmp, 3*3*sizeof(double)); +} + +void +smulm(Matrix m, double s) +{ + int i, j; + + for(i = 0; i < 3; i++) + for(j = 0; j < 3; j++) + m[i][j] *= s; +} + +void +transposem(Matrix m) +{ + int i, j; + double tmp; + + for(i = 0; i < 3; i++) + for(j = i; j < 3; j++){ + tmp = m[i][j]; + m[i][j] = m[j][i]; + m[j][i] = tmp; + } +} + +double +detm(Matrix m) +{ + return m[0][0]*(m[1][1]*m[2][2] - m[1][2]*m[2][1])+ + m[0][1]*(m[1][2]*m[2][0] - m[1][0]*m[2][2])+ + m[0][2]*(m[1][0]*m[2][1] - m[1][1]*m[2][0]); +} + +double +tracem(Matrix m) +{ + return m[0][0] + m[1][1] + m[2][2]; +} + +void +adjm(Matrix m) +{ Matrix tmp; - for(i=0;i!=4;i++) for(j=0;j!=4;j++){ - sum=0; - for(k=0;k!=4;k++) - sum+=b[i][k]*a[k][j]; - tmp[i][j]=sum; - } - for(i=0;i!=4;i++) for(j=0;j!=4;j++) - a[i][j]=tmp[i][j]; -} -/* - * Return det(m) - */ -double determinant(Matrix m){ - return m[0][0]*(m[1][1]*(m[2][2]*m[3][3]-m[2][3]*m[3][2])+ - m[1][2]*(m[2][3]*m[3][1]-m[2][1]*m[3][3])+ - m[1][3]*(m[2][1]*m[3][2]-m[2][2]*m[3][1])) - -m[0][1]*(m[1][0]*(m[2][2]*m[3][3]-m[2][3]*m[3][2])+ - m[1][2]*(m[2][3]*m[3][0]-m[2][0]*m[3][3])+ - m[1][3]*(m[2][0]*m[3][2]-m[2][2]*m[3][0])) - +m[0][2]*(m[1][0]*(m[2][1]*m[3][3]-m[2][3]*m[3][1])+ - m[1][1]*(m[2][3]*m[3][0]-m[2][0]*m[3][3])+ - m[1][3]*(m[2][0]*m[3][1]-m[2][1]*m[3][0])) - -m[0][3]*(m[1][0]*(m[2][1]*m[3][2]-m[2][2]*m[3][1])+ - m[1][1]*(m[2][2]*m[3][0]-m[2][0]*m[3][2])+ - m[1][2]*(m[2][0]*m[3][1]-m[2][1]*m[3][0])); -} -/* - * Store the adjoint (matrix of cofactors) of m in madj. - * Works fine even if m and madj are the same matrix. - */ -void adjoint(Matrix m, Matrix madj){ - double m00=m[0][0], m01=m[0][1], m02=m[0][2], m03=m[0][3]; - double m10=m[1][0], m11=m[1][1], m12=m[1][2], m13=m[1][3]; - double m20=m[2][0], m21=m[2][1], m22=m[2][2], m23=m[2][3]; - double m30=m[3][0], m31=m[3][1], m32=m[3][2], m33=m[3][3]; - madj[0][0]=m11*(m22*m33-m23*m32)+m21*(m13*m32-m12*m33)+m31*(m12*m23-m13*m22); - madj[0][1]=m01*(m23*m32-m22*m33)+m21*(m02*m33-m03*m32)+m31*(m03*m22-m02*m23); - madj[0][2]=m01*(m12*m33-m13*m32)+m11*(m03*m32-m02*m33)+m31*(m02*m13-m03*m12); - madj[0][3]=m01*(m13*m22-m12*m23)+m11*(m02*m23-m03*m22)+m21*(m03*m12-m02*m13); - madj[1][0]=m10*(m23*m32-m22*m33)+m20*(m12*m33-m13*m32)+m30*(m13*m22-m12*m23); - madj[1][1]=m00*(m22*m33-m23*m32)+m20*(m03*m32-m02*m33)+m30*(m02*m23-m03*m22); - madj[1][2]=m00*(m13*m32-m12*m33)+m10*(m02*m33-m03*m32)+m30*(m03*m12-m02*m13); - madj[1][3]=m00*(m12*m23-m13*m22)+m10*(m03*m22-m02*m23)+m20*(m02*m13-m03*m12); - madj[2][0]=m10*(m21*m33-m23*m31)+m20*(m13*m31-m11*m33)+m30*(m11*m23-m13*m21); - madj[2][1]=m00*(m23*m31-m21*m33)+m20*(m01*m33-m03*m31)+m30*(m03*m21-m01*m23); - madj[2][2]=m00*(m11*m33-m13*m31)+m10*(m03*m31-m01*m33)+m30*(m01*m13-m03*m11); - madj[2][3]=m00*(m13*m21-m11*m23)+m10*(m01*m23-m03*m21)+m20*(m03*m11-m01*m13); - madj[3][0]=m10*(m22*m31-m21*m32)+m20*(m11*m32-m12*m31)+m30*(m12*m21-m11*m22); - madj[3][1]=m00*(m21*m32-m22*m31)+m20*(m02*m31-m01*m32)+m30*(m01*m22-m02*m21); - madj[3][2]=m00*(m12*m31-m11*m32)+m10*(m01*m32-m02*m31)+m30*(m02*m11-m01*m12); - madj[3][3]=m00*(m11*m22-m12*m21)+m10*(m02*m21-m01*m22)+m20*(m01*m12-m02*m11); -} -/* - * Store the inverse of m in minv. - * If m is singular, minv is instead its adjoint. - * Returns det(m). - * Works fine even if m and minv are the same matrix. - */ -double invertmat(Matrix m, Matrix minv){ - double d, dinv; + + tmp[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; + tmp[0][1] = -m[0][1]*m[2][2] + m[0][2]*m[2][1]; + tmp[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; + tmp[1][0] = -m[1][0]*m[2][2] + m[1][2]*m[2][0]; + tmp[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; + tmp[1][2] = -m[0][0]*m[1][2] + m[0][2]*m[1][0]; + tmp[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; + tmp[2][1] = -m[0][0]*m[2][1] + m[0][1]*m[2][0]; + tmp[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]; + memmove(m, tmp, 3*3*sizeof(double)); +} + +/* Cayley-Hamilton */ +//void +//invertm(Matrix m) +//{ +// Matrix m², r; +// double det, trm, trm²; +// +// det = detm(m); +// if(det == 0) +// return; +// trm = tracem(m); +// memmove(m², m, 3*3*sizeof(double)); +// mulm(m², m²); +// trm² = tracem(m²); +// identity(r); +// smulm(r, (trm*trm - trm²)/2); +// smulm(m, trm); +// subm(r, m); +// addm(r, m²); +// smulm(r, 1/det); +// memmove(m, r, 3*3*sizeof(double)); +//} + +/* Cramer's */ +void +invm(Matrix m) +{ + double det; + + det = detm(m); + if(det == 0) + return; /* singular matrices are not invertible */ + adjm(m); + smulm(m, 1/det); +} + +Point2 +xform(Point2 p, Matrix m) +{ + return (Point2){ + p.x*m[0][0] + p.y*m[0][1] + p.w*m[0][2], + p.x*m[1][0] + p.y*m[1][1] + p.w*m[1][2], + p.x*m[2][0] + p.y*m[2][1] + p.w*m[2][2] + }; +} + +/* 3D */ + +void +identity3(Matrix3 m) +{ + memset(m, 0, 4*4*sizeof(double)); + m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1; +} + +void +addm3(Matrix3 a, Matrix3 b) +{ + int i, j; + + for(i = 0; i < 4; i++) + for(j = 0; j < 4; j++) + a[i][j] += b[i][j]; +} + +void +subm3(Matrix3 a, Matrix3 b) +{ + int i, j; + + for(i = 0; i < 4; i++) + for(j = 0; j < 4; j++) + a[i][j] -= b[i][j]; +} + +void +mulm3(Matrix3 a, Matrix3 b) +{ + int i, j, k; + Matrix3 tmp; + + for(i = 0; i < 4; i++) + for(j = 0; j < 4; j++){ + tmp[i][j] = 0; + for(k = 0; k < 4; k++) + tmp[i][j] += a[i][k]*b[k][j]; + } + memmove(a, tmp, 4*4*sizeof(double)); +} + +void +smulm3(Matrix3 m, double s) +{ int i, j; - d=determinant(m); - adjoint(m, minv); - if(d!=0.){ - dinv=1./d; - for(i=0;i!=4;i++) for(j=0;j!=4;j++) minv[i][j]*=dinv; - } - return d; + + for(i = 0; i < 4; i++) + for(j = 0; j < 4; j++) + m[i][j] *= s; +} + +void +transposem3(Matrix3 m) +{ + int i, j; + double tmp; + + for(i = 0; i < 4; i++) + for(j = i; j < 4; j++){ + tmp = m[i][j]; + m[i][j] = m[j][i]; + m[j][i] = tmp; + } +} + +double +detm3(Matrix3 m) +{ + return m[0][0]*(m[1][1]*(m[2][2]*m[3][3] - m[2][3]*m[3][2])+ + m[1][2]*(m[2][3]*m[3][1] - m[2][1]*m[3][3])+ + m[1][3]*(m[2][1]*m[3][2] - m[2][2]*m[3][1])) + -m[0][1]*(m[1][0]*(m[2][2]*m[3][3] - m[2][3]*m[3][2])+ + m[1][2]*(m[2][3]*m[3][0] - m[2][0]*m[3][3])+ + m[1][3]*(m[2][0]*m[3][2] - m[2][2]*m[3][0])) + +m[0][2]*(m[1][0]*(m[2][1]*m[3][3] - m[2][3]*m[3][1])+ + m[1][1]*(m[2][3]*m[3][0] - m[2][0]*m[3][3])+ + m[1][3]*(m[2][0]*m[3][1] - m[2][1]*m[3][0])) + -m[0][3]*(m[1][0]*(m[2][1]*m[3][2] - m[2][2]*m[3][1])+ + m[1][1]*(m[2][2]*m[3][0] - m[2][0]*m[3][2])+ + m[1][2]*(m[2][0]*m[3][1] - m[2][1]*m[3][0])); +} + +double +tracem3(Matrix3 m) +{ + return m[0][0] + m[1][1] + m[2][2] + m[3][3]; +} + +void +adjm3(Matrix3 m) +{ + Matrix3 tmp; + + tmp[0][0]=m[1][1]*(m[2][2]*m[3][3] - m[2][3]*m[3][2])+ + m[2][1]*(m[1][3]*m[3][2] - m[1][2]*m[3][3])+ + m[3][1]*(m[1][2]*m[2][3] - m[1][3]*m[2][2]); + tmp[0][1]=m[0][1]*(m[2][3]*m[3][2] - m[2][2]*m[3][3])+ + m[2][1]*(m[0][2]*m[3][3] - m[0][3]*m[3][2])+ + m[3][1]*(m[0][3]*m[2][2] - m[0][2]*m[2][3]); + tmp[0][2]=m[0][1]*(m[1][2]*m[3][3] - m[1][3]*m[3][2])+ + m[1][1]*(m[0][3]*m[3][2] - m[0][2]*m[3][3])+ + m[3][1]*(m[0][2]*m[1][3] - m[0][3]*m[1][2]); + tmp[0][3]=m[0][1]*(m[1][3]*m[2][2] - m[1][2]*m[2][3])+ + m[1][1]*(m[0][2]*m[2][3] - m[0][3]*m[2][2])+ + m[2][1]*(m[0][3]*m[1][2] - m[0][2]*m[1][3]); + tmp[1][0]=m[1][0]*(m[2][3]*m[3][2] - m[2][2]*m[3][3])+ + m[2][0]*(m[1][2]*m[3][3] - m[1][3]*m[3][2])+ + m[3][0]*(m[1][3]*m[2][2] - m[1][2]*m[2][3]); + tmp[1][1]=m[0][0]*(m[2][2]*m[3][3] - m[2][3]*m[3][2])+ + m[2][0]*(m[0][3]*m[3][2] - m[0][2]*m[3][3])+ + m[3][0]*(m[0][2]*m[2][3] - m[0][3]*m[2][2]); + tmp[1][2]=m[0][0]*(m[1][3]*m[3][2] - m[1][2]*m[3][3])+ + m[1][0]*(m[0][2]*m[3][3] - m[0][3]*m[3][2])+ + m[3][0]*(m[0][3]*m[1][2] - m[0][2]*m[1][3]); + tmp[1][3]=m[0][0]*(m[1][2]*m[2][3] - m[1][3]*m[2][2])+ + m[1][0]*(m[0][3]*m[2][2] - m[0][2]*m[2][3])+ + m[2][0]*(m[0][2]*m[1][3] - m[0][3]*m[1][2]); + tmp[2][0]=m[1][0]*(m[2][1]*m[3][3] - m[2][3]*m[3][1])+ + m[2][0]*(m[1][3]*m[3][1] - m[1][1]*m[3][3])+ + m[3][0]*(m[1][1]*m[2][3] - m[1][3]*m[2][1]); + tmp[2][1]=m[0][0]*(m[2][3]*m[3][1] - m[2][1]*m[3][3])+ + m[2][0]*(m[0][1]*m[3][3] - m[0][3]*m[3][1])+ + m[3][0]*(m[0][3]*m[2][1] - m[0][1]*m[2][3]); + tmp[2][2]=m[0][0]*(m[1][1]*m[3][3] - m[1][3]*m[3][1])+ + m[1][0]*(m[0][3]*m[3][1] - m[0][1]*m[3][3])+ + m[3][0]*(m[0][1]*m[1][3] - m[0][3]*m[1][1]); + tmp[2][3]=m[0][0]*(m[1][3]*m[2][1] - m[1][1]*m[2][3])+ + m[1][0]*(m[0][1]*m[2][3] - m[0][3]*m[2][1])+ + m[2][0]*(m[0][3]*m[1][1] - m[0][1]*m[1][3]); + tmp[3][0]=m[1][0]*(m[2][2]*m[3][1] - m[2][1]*m[3][2])+ + m[2][0]*(m[1][1]*m[3][2] - m[1][2]*m[3][1])+ + m[3][0]*(m[1][2]*m[2][1] - m[1][1]*m[2][2]); + tmp[3][1]=m[0][0]*(m[2][1]*m[3][2] - m[2][2]*m[3][1])+ + m[2][0]*(m[0][2]*m[3][1] - m[0][1]*m[3][2])+ + m[3][0]*(m[0][1]*m[2][2] - m[0][2]*m[2][1]); + tmp[3][2]=m[0][0]*(m[1][2]*m[3][1] - m[1][1]*m[3][2])+ + m[1][0]*(m[0][1]*m[3][2] - m[0][2]*m[3][1])+ + m[3][0]*(m[0][2]*m[1][1] - m[0][1]*m[1][2]); + tmp[3][3]=m[0][0]*(m[1][1]*m[2][2] - m[1][2]*m[2][1])+ + m[1][0]*(m[0][2]*m[2][1] - m[0][1]*m[2][2])+ + m[2][0]*(m[0][1]*m[1][2] - m[0][2]*m[1][1]); + memmove(m, tmp, 4*4*sizeof(double)); +} + +/* Cayley-Hamilton */ +//void +//invertm3(Matrix3 m) +//{ +// Matrix3 m², m³, r; +// double det, trm, trm², trm³; +// +// det = detm3(m); +// if(det == 0) +// return; +// trm = tracem3(m); +// memmove(m³, m, 4*4*sizeof(double)); +// mulm(m³, m³); +// mulm(m³, m); +// trm³ = tracem3(m³); +// memmove(m², m, 4*4*sizeof(double)); +// mulm(m², m²); +// trm² = tracem3(m²); +// identity3(r); +// smulm3(r, (trm*trm*trm - 3*trm*trm² + 2*trm³)/6); +// smulm3(m, (trm*trm - trm²)/2); +// smulm3(m², trm); +// subm(r, m); +// addm(r, m²); +// subm(r, m³); +// smulm(r, 1/det); +// memmove(m, r, 4*4*sizeof(double)); +//} + +/* Cramer's */ +void +invm3(Matrix3 m) +{ + double det; + + det = detm3(m); + if(det == 0) + return; /* singular matrices are not invertible */ + adjm3(m); + smulm3(m, 1/det); +} + +Point3 +xform3(Point3 p, Matrix3 m) +{ + return (Point3){ + p.x*m[0][0] + p.y*m[0][1] + p.z*m[0][2] + p.w*m[0][3], + p.x*m[1][0] + p.y*m[1][1] + p.z*m[1][2] + p.w*m[1][3], + p.x*m[2][0] + p.y*m[2][1] + p.z*m[2][2] + p.w*m[2][3], + p.x*m[3][0] + p.y*m[3][1] + p.z*m[3][2] + p.w*m[3][3], + }; } diff --git a/sys/src/libgeometry/mkfile b/sys/src/libgeometry/mkfile index 21f6b3f1b..9e85f1a7f 100644 --- a/sys/src/libgeometry/mkfile +++ b/sys/src/libgeometry/mkfile @@ -1,23 +1,22 @@ </$objtype/mkfile LIB=/$objtype/lib/libgeometry.a + OFILES=\ - arith3.$O\ + point.$O\ matrix.$O\ - qball.$O\ quaternion.$O\ - transform.$O\ - tstack.$O\ - -HFILES=/sys/include/geometry.h + rframe.$O\ + triangle.$O\ + utils.$O\ + fmt.$O\ -</sys/src/cmd/mksyslib +HFILES=\ + /sys/include/geometry.h UPDATE=\ mkfile\ $HFILES\ ${OFILES:%.$O=%.c}\ - ${LIB:/$objtype/%=/386/%}\ -listing:V: - pr mkfile $HFILES $CFILES|lp -du +</sys/src/cmd/mksyslib diff --git a/sys/src/libgeometry/point.c b/sys/src/libgeometry/point.c new file mode 100644 index 000000000..0267c41e5 --- /dev/null +++ b/sys/src/libgeometry/point.c @@ -0,0 +1,200 @@ +#include <u.h> +#include <libc.h> +#include <geometry.h> + +/* 2D */ + +Point2 +Pt2(double x, double y, double w) +{ + return (Point2){x, y, w}; +} + +Point2 +Vec2(double x, double y) +{ + return (Point2){x, y, 0}; +} + +Point2 +addpt2(Point2 a, Point2 b) +{ + return Pt2(a.x+b.x, a.y+b.y, a.w+b.w); +} + +Point2 +subpt2(Point2 a, Point2 b) +{ + return Pt2(a.x-b.x, a.y-b.y, a.w-b.w); +} + +Point2 +mulpt2(Point2 p, double s) +{ + return Pt2(p.x*s, p.y*s, p.w*s); +} + +Point2 +divpt2(Point2 p, double s) +{ + return Pt2(p.x/s, p.y/s, p.w/s); +} + +Point2 +lerp2(Point2 a, Point2 b, double t) +{ + t = fclamp(t, 0, 1); + return Pt2( + flerp(a.x, b.x, t), + flerp(a.y, b.y, t), + flerp(a.w, b.w, t) + ); +} + +double +dotvec2(Point2 a, Point2 b) +{ + return a.x*b.x + a.y*b.y; +} + +double +vec2len(Point2 v) +{ + return sqrt(dotvec2(v, v)); +} + +Point2 +normvec2(Point2 v) +{ + double len; + + len = vec2len(v); + if(len == 0) + return Pt2(0,0,0); + return Pt2(v.x/len, v.y/len, 0); +} + +/* + * the edge function, from: + * + * Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”, + * Computer Graphics, Vol. 22, No. 8, August 1988 + * + * comparison of a point p with an edge [e0 e1] + * p to the right: + + * p to the left: - + * p on the edge: 0 + */ +int +edgeptcmp(Point2 e0, Point2 e1, Point2 p) +{ + Point3 e0p, e01, r; + + p = subpt2(p, e0); + e1 = subpt2(e1, e0); + e0p = Vec3(p.x,p.y,0); + e01 = Vec3(e1.x,e1.y,0); + r = crossvec3(e0p, e01); + + /* clamp to avoid overflow */ + return fclamp(r.z, -1, 1); /* e0.x*e1.y - e0.y*e1.x */ +} + +/* + * (PNPOLY) algorithm by W. Randolph Franklin + */ +int +ptinpoly(Point2 p, Point2 *pts, ulong npts) +{ + int i, j, c; + + for(i = c = 0, j = npts-1; i < npts; j = i++) + if(p.y < pts[i].y != p.y < pts[j].y && + p.x < (pts[j].x - pts[i].x) * (p.y - pts[i].y)/(pts[j].y - pts[i].y) + pts[i].x) + c ^= 1; + return c; +} + +/* 3D */ + +Point3 +Pt3(double x, double y, double z, double w) +{ + return (Point3){x, y, z, w}; +} + +Point3 +Vec3(double x, double y, double z) +{ + return (Point3){x, y, z, 0}; +} + +Point3 +addpt3(Point3 a, Point3 b) +{ + return Pt3(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); +} + +Point3 +subpt3(Point3 a, Point3 b) +{ + return Pt3(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); +} + +Point3 +mulpt3(Point3 p, double s) +{ + return Pt3(p.x*s, p.y*s, p.z*s, p.w*s); +} + +Point3 +divpt3(Point3 p, double s) +{ + return Pt3(p.x/s, p.y/s, p.z/s, p.w/s); +} + +Point3 +lerp3(Point3 a, Point3 b, double t) +{ + t = fclamp(t, 0, 1); + return Pt3( + flerp(a.x, b.x, t), + flerp(a.y, b.y, t), + flerp(a.z, b.z, t), + flerp(a.w, b.w, t) + ); +} + +double +dotvec3(Point3 a, Point3 b) +{ + return a.x*b.x + a.y*b.y + a.z*b.z; +} + +Point3 +crossvec3(Point3 a, Point3 b) +{ + return Pt3( + a.y*b.z - a.z*b.y, + a.z*b.x - a.x*b.z, + a.x*b.y - a.y*b.x, + 0 + ); +} + +double +vec3len(Point3 v) +{ + return sqrt(dotvec3(v, v)); +} + +Point3 +normvec3(Point3 v) +{ + double len; + + len = vec3len(v); + if(len == 0) + return Pt3(0,0,0,0); + return Pt3(v.x/len, v.y/len, v.z/len, 0); +} diff --git a/sys/src/libgeometry/qball.c b/sys/src/libgeometry/qball.c deleted file mode 100644 index aaf4e6dfd..000000000 --- a/sys/src/libgeometry/qball.c +++ /dev/null @@ -1,65 +0,0 @@ -/* - * Ken Shoemake's Quaternion rotation controller - */ -#include <u.h> -#include <libc.h> -#include <draw.h> -#include <event.h> -#include <geometry.h> -#define BORDER 4 -static Point ctlcen; /* center of qball */ -static int ctlrad; /* radius of qball */ -static Quaternion *axis; /* constraint plane orientation, 0 if none */ -/* - * Convert a mouse point into a unit quaternion, flattening if - * constrained to a particular plane. - */ -static Quaternion mouseq(Point p){ - double qx=(double)(p.x-ctlcen.x)/ctlrad; - double qy=(double)(p.y-ctlcen.y)/ctlrad; - double rsq=qx*qx+qy*qy; - double l; - Quaternion q; - if(rsq>1){ - rsq=sqrt(rsq); - q.r=0.; - q.i=qx/rsq; - q.j=qy/rsq; - q.k=0.; - } - else{ - q.r=0.; - q.i=qx; - q.j=qy; - q.k=sqrt(1.-rsq); - } - if(axis){ - l=q.i*axis->i+q.j*axis->j+q.k*axis->k; - q.i-=l*axis->i; - q.j-=l*axis->j; - q.k-=l*axis->k; - l=sqrt(q.i*q.i+q.j*q.j+q.k*q.k); - if(l!=0.){ - q.i/=l; - q.j/=l; - q.k/=l; - } - } - return q; -} -void qball(Rectangle r, Mouse *m, Quaternion *result, void (*redraw)(void), Quaternion *ap){ - Quaternion q, down; - Point rad; - axis=ap; - ctlcen=divpt(addpt(r.min, r.max), 2); - rad=divpt(subpt(r.max, r.min), 2); - ctlrad=(rad.x<rad.y?rad.x:rad.y)-BORDER; - down=qinv(mouseq(m->xy)); - q=*result; - for(;;){ - *m=emouse(); - if(!m->buttons) break; - *result=qmul(q, qmul(down, mouseq(m->xy))); - (*redraw)(); - } -} diff --git a/sys/src/libgeometry/quaternion.c b/sys/src/libgeometry/quaternion.c index 1f920f5a8..ca44747e1 100644 --- a/sys/src/libgeometry/quaternion.c +++ b/sys/src/libgeometry/quaternion.c @@ -1,242 +1,108 @@ -/* - * Quaternion arithmetic: - * qadd(q, r) returns q+r - * qsub(q, r) returns q-r - * qneg(q) returns -q - * qmul(q, r) returns q*r - * qdiv(q, r) returns q/r, can divide check. - * qinv(q) returns 1/q, can divide check. - * double qlen(p) returns modulus of p - * qunit(q) returns a unit quaternion parallel to q - * The following only work on unit quaternions and rotation matrices: - * slerp(q, r, a) returns q*(r*q^-1)^a - * qmid(q, r) slerp(q, r, .5) - * qsqrt(q) qmid(q, (Quaternion){1,0,0,0}) - * qtom(m, q) converts a unit quaternion q into a rotation matrix m - * mtoq(m) returns a quaternion equivalent to a rotation matrix m - */ #include <u.h> #include <libc.h> -#include <draw.h> #include <geometry.h> -void qtom(Matrix m, Quaternion q){ -#ifndef new - m[0][0]=1-2*(q.j*q.j+q.k*q.k); - m[0][1]=2*(q.i*q.j+q.r*q.k); - m[0][2]=2*(q.i*q.k-q.r*q.j); - m[0][3]=0; - m[1][0]=2*(q.i*q.j-q.r*q.k); - m[1][1]=1-2*(q.i*q.i+q.k*q.k); - m[1][2]=2*(q.j*q.k+q.r*q.i); - m[1][3]=0; - m[2][0]=2*(q.i*q.k+q.r*q.j); - m[2][1]=2*(q.j*q.k-q.r*q.i); - m[2][2]=1-2*(q.i*q.i+q.j*q.j); - m[2][3]=0; - m[3][0]=0; - m[3][1]=0; - m[3][2]=0; - m[3][3]=1; -#else - /* - * Transcribed from Ken Shoemake's new code -- not known to work - */ - double Nq = q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; - double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0; - double xs = q.i*s, ys = q.j*s, zs = q.k*s; - double wx = q.r*xs, wy = q.r*ys, wz = q.r*zs; - double xx = q.i*xs, xy = q.i*ys, xz = q.i*zs; - double yy = q.j*ys, yz = q.j*zs, zz = q.k*zs; - m[0][0] = 1.0 - (yy + zz); m[1][0] = xy + wz; m[2][0] = xz - wy; - m[0][1] = xy - wz; m[1][1] = 1.0 - (xx + zz); m[2][1] = yz + wx; - m[0][2] = xz + wy; m[1][2] = yz - wx; m[2][2] = 1.0 - (xx + yy); - m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0; - m[3][3] = 1.0; -#endif + +Quaternion +Quat(double r, double i, double j, double k) +{ + return (Quaternion){r, i, j, k}; } -Quaternion mtoq(Matrix mat){ -#ifndef new -#define EPS 1.387778780781445675529539585113525e-17 /* 2^-56 */ - double t; - Quaternion q; - q.r=0.; - q.i=0.; - q.j=0.; - q.k=1.; - if((t=.25*(1+mat[0][0]+mat[1][1]+mat[2][2]))>EPS){ - q.r=sqrt(t); - t=4*q.r; - q.i=(mat[1][2]-mat[2][1])/t; - q.j=(mat[2][0]-mat[0][2])/t; - q.k=(mat[0][1]-mat[1][0])/t; - } - else if((t=-.5*(mat[1][1]+mat[2][2]))>EPS){ - q.i=sqrt(t); - t=2*q.i; - q.j=mat[0][1]/t; - q.k=mat[0][2]/t; - } - else if((t=.5*(1-mat[2][2]))>EPS){ - q.j=sqrt(t); - q.k=mat[1][2]/(2*q.j); - } - return q; -#else - /* - * Transcribed from Ken Shoemake's new code -- not known to work - */ - /* This algorithm avoids near-zero divides by looking for a large - * component -- first r, then i, j, or k. When the trace is greater than zero, - * |r| is greater than 1/2, which is as small as a largest component can be. - * Otherwise, the largest diagonal entry corresponds to the largest of |i|, - * |j|, or |k|, one of which must be larger than |r|, and at least 1/2. - */ - Quaternion qu; - double tr, s; - - tr = mat[0][0] + mat[1][1] + mat[2][2]; - if (tr >= 0.0) { - s = sqrt(tr + mat[3][3]); - qu.r = s*0.5; - s = 0.5 / s; - qu.i = (mat[2][1] - mat[1][2]) * s; - qu.j = (mat[0][2] - mat[2][0]) * s; - qu.k = (mat[1][0] - mat[0][1]) * s; - } - else { - int i = 0; - if (mat[1][1] > mat[0][0]) i = 1; - if (mat[2][2] > mat[i][i]) i = 2; - switch(i){ - case 0: - s = sqrt( (mat[0][0] - (mat[1][1]+mat[2][2])) + mat[3][3] ); - qu.i = s*0.5; - s = 0.5 / s; - qu.j = (mat[0][1] + mat[1][0]) * s; - qu.k = (mat[2][0] + mat[0][2]) * s; - qu.r = (mat[2][1] - mat[1][2]) * s; - break; - case 1: - s = sqrt( (mat[1][1] - (mat[2][2]+mat[0][0])) + mat[3][3] ); - qu.j = s*0.5; - s = 0.5 / s; - qu.k = (mat[1][2] + mat[2][1]) * s; - qu.i = (mat[0][1] + mat[1][0]) * s; - qu.r = (mat[0][2] - mat[2][0]) * s; - break; - case 2: - s = sqrt( (mat[2][2] - (mat[0][0]+mat[1][1])) + mat[3][3] ); - qu.k = s*0.5; - s = 0.5 / s; - qu.i = (mat[2][0] + mat[0][2]) * s; - qu.j = (mat[1][2] + mat[2][1]) * s; - qu.r = (mat[1][0] - mat[0][1]) * s; - break; - } - } - if (mat[3][3] != 1.0){ - s=1/sqrt(mat[3][3]); - qu.r*=s; - qu.i*=s; - qu.j*=s; - qu.k*=s; - } - return (qu); -#endif + +Quaternion +Quatvec(double s, Point3 v) +{ + return (Quaternion){s, v.x, v.y, v.z}; } -Quaternion qadd(Quaternion q, Quaternion r){ - q.r+=r.r; - q.i+=r.i; - q.j+=r.j; - q.k+=r.k; - return q; + +Quaternion +addq(Quaternion a, Quaternion b) +{ + return Quat(a.r+b.r, a.i+b.i, a.j+b.j, a.k+b.k); } -Quaternion qsub(Quaternion q, Quaternion r){ - q.r-=r.r; - q.i-=r.i; - q.j-=r.j; - q.k-=r.k; - return q; + +Quaternion +subq(Quaternion a, Quaternion b) +{ + return Quat(a.r-b.r, a.i-b.i, a.j-b.j, a.k-b.k); } -Quaternion qneg(Quaternion q){ - q.r=-q.r; - q.i=-q.i; - q.j=-q.j; - q.k=-q.k; - return q; + +Quaternion +mulq(Quaternion q, Quaternion r) +{ + Point3 qv, rv, tmp; + + qv = Vec3(q.i, q.j, q.k); + rv = Vec3(r.i, r.j, r.k); + tmp = addpt3(addpt3(mulpt3(rv, q.r), mulpt3(qv, r.r)), crossvec3(qv, rv)); + return Quatvec(q.r*r.r - dotvec3(qv, rv), tmp); } -Quaternion qmul(Quaternion q, Quaternion r){ - Quaternion s; - s.r=q.r*r.r-q.i*r.i-q.j*r.j-q.k*r.k; - s.i=q.r*r.i+r.r*q.i+q.j*r.k-q.k*r.j; - s.j=q.r*r.j+r.r*q.j+q.k*r.i-q.i*r.k; - s.k=q.r*r.k+r.r*q.k+q.i*r.j-q.j*r.i; - return s; + +Quaternion +smulq(Quaternion q, double s) +{ + return Quat(q.r*s, q.i*s, q.j*s, q.k*s); } -Quaternion qdiv(Quaternion q, Quaternion r){ - return qmul(q, qinv(r)); + +Quaternion +sdivq(Quaternion q, double s) +{ + return Quat(q.r/s, q.i/s, q.j/s, q.k/s); } -Quaternion qunit(Quaternion q){ - double l=qlen(q); - q.r/=l; - q.i/=l; - q.j/=l; - q.k/=l; - return q; + +double +dotq(Quaternion q, Quaternion r) +{ + return q.r*r.r + q.i*r.i + q.j*r.j + q.k*r.k; } -/* - * Bug?: takes no action on divide check - */ -Quaternion qinv(Quaternion q){ - double l=q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; - q.r/=l; - q.i=-q.i/l; - q.j=-q.j/l; - q.k=-q.k/l; - return q; + +Quaternion +invq(Quaternion q) +{ + double len²; + + len² = dotq(q, q); + if(len² == 0) + return Quat(0,0,0,0); + return Quat(q.r/len², -q.i/len², -q.j/len², -q.k/len²); } -double qlen(Quaternion p){ - return sqrt(p.r*p.r+p.i*p.i+p.j*p.j+p.k*p.k); + +double +qlen(Quaternion q) +{ + return sqrt(dotq(q, q)); } -Quaternion slerp(Quaternion q, Quaternion r, double a){ - double u, v, ang, s; - double dot=q.r*r.r+q.i*r.i+q.j*r.j+q.k*r.k; - ang=dot<-1?PI:dot>1?0:acos(dot); /* acos gives NaN for dot slightly out of range */ - s=sin(ang); - if(s==0) return ang<PI/2?q:r; - u=sin((1-a)*ang)/s; - v=sin(a*ang)/s; - q.r=u*q.r+v*r.r; - q.i=u*q.i+v*r.i; - q.j=u*q.j+v*r.j; - q.k=u*q.k+v*r.k; - return q; + +Quaternion +normq(Quaternion q) +{ + return sdivq(q, qlen(q)); } + /* - * Only works if qlen(q)==qlen(r)==1 + * based on the implementation from: + * + * Jonathan Blow, “Understanding Slerp, Then Not Using it”, + * The Inner Product, April 2004. */ -Quaternion qmid(Quaternion q, Quaternion r){ - double l; - q=qadd(q, r); - l=qlen(q); - if(l<1e-12){ - q.r=r.i; - q.i=-r.r; - q.j=r.k; - q.k=-r.j; - } - else{ - q.r/=l; - q.i/=l; - q.j/=l; - q.k/=l; - } - return q; +Quaternion +slerp(Quaternion q, Quaternion r, double t) +{ + Quaternion v; + double θ, q·r; + + q·r = fclamp(dotq(q, r), -1, 1); /* stay within the domain of acos(2) */ + θ = acos(q·r)*t; + v = normq(subq(r, smulq(q, q·r))); /* v = r - (q·r)q / |v| */ + return addq(smulq(q, cos(θ)), smulq(v, sin(θ))); /* q cos(θ) + v sin(θ) */ } -/* - * Only works if qlen(q)==1 - */ -static Quaternion qident={1,0,0,0}; -Quaternion qsqrt(Quaternion q){ - return qmid(q, qident); + +Point3 +qrotate(Point3 p, Point3 axis, double θ) +{ + Quaternion qaxis, qr; + + θ /= 2; + qaxis = Quatvec(cos(θ), mulpt3(axis, sin(θ))); + qr = mulq(mulq(qaxis, Quatvec(0, p)), invq(qaxis)); /* qpq⁻¹ */ + return Pt3(qr.i, qr.j, qr.k, p.w); } diff --git a/sys/src/libgeometry/rframe.c b/sys/src/libgeometry/rframe.c new file mode 100644 index 000000000..2f7c68264 --- /dev/null +++ b/sys/src/libgeometry/rframe.c @@ -0,0 +1,51 @@ +#include <u.h> +#include <libc.h> +#include <geometry.h> + +Point2 +rframexform(Point2 p, RFrame rf) +{ + Matrix m = { + rf.bx.x, rf.bx.y, -dotvec2(rf.bx, rf.p), + rf.by.x, rf.by.y, -dotvec2(rf.by, rf.p), + 0, 0, 1, + }; + return xform(p, m); +} + +Point3 +rframexform3(Point3 p, RFrame3 rf) +{ + Matrix3 m = { + rf.bx.x, rf.bx.y, rf.bx.z, -dotvec3(rf.bx, rf.p), + rf.by.x, rf.by.y, rf.by.z, -dotvec3(rf.by, rf.p), + rf.bz.x, rf.bz.y, rf.bz.z, -dotvec3(rf.bz, rf.p), + 0, 0, 0, 1, + }; + return xform3(p, m); +} + +Point2 +invrframexform(Point2 p, RFrame rf) +{ + Matrix m = { + rf.bx.x, rf.bx.y, -dotvec2(rf.bx, rf.p), + rf.by.x, rf.by.y, -dotvec2(rf.by, rf.p), + 0, 0, 1, + }; + invm(m); + return xform(p, m); +} + +Point3 +invrframexform3(Point3 p, RFrame3 rf) +{ + Matrix3 m = { + rf.bx.x, rf.bx.y, rf.bx.z, -dotvec3(rf.bx, rf.p), + rf.by.x, rf.by.y, rf.by.z, -dotvec3(rf.by, rf.p), + rf.bz.x, rf.bz.y, rf.bz.z, -dotvec3(rf.bz, rf.p), + 0, 0, 0, 1, + }; + invm3(m); + return xform3(p, m); +} diff --git a/sys/src/libgeometry/transform.c b/sys/src/libgeometry/transform.c deleted file mode 100644 index a59248725..000000000 --- a/sys/src/libgeometry/transform.c +++ /dev/null @@ -1,75 +0,0 @@ -/* - * The following routines transform points and planes from one space - * to another. Points and planes are represented by their - * homogeneous coordinates, stored in variables of type Point3. - */ -#include <u.h> -#include <libc.h> -#include <draw.h> -#include <geometry.h> -/* - * Transform point p. - */ -Point3 xformpoint(Point3 p, Space *to, Space *from){ - Point3 q, r; - register double *m; - if(from){ - m=&from->t[0][0]; - q.x=*m++*p.x; q.x+=*m++*p.y; q.x+=*m++*p.z; q.x+=*m++*p.w; - q.y=*m++*p.x; q.y+=*m++*p.y; q.y+=*m++*p.z; q.y+=*m++*p.w; - q.z=*m++*p.x; q.z+=*m++*p.y; q.z+=*m++*p.z; q.z+=*m++*p.w; - q.w=*m++*p.x; q.w+=*m++*p.y; q.w+=*m++*p.z; q.w+=*m *p.w; - } - else - q=p; - if(to){ - m=&to->tinv[0][0]; - r.x=*m++*q.x; r.x+=*m++*q.y; r.x+=*m++*q.z; r.x+=*m++*q.w; - r.y=*m++*q.x; r.y+=*m++*q.y; r.y+=*m++*q.z; r.y+=*m++*q.w; - r.z=*m++*q.x; r.z+=*m++*q.y; r.z+=*m++*q.z; r.z+=*m++*q.w; - r.w=*m++*q.x; r.w+=*m++*q.y; r.w+=*m++*q.z; r.w+=*m *q.w; - } - else - r=q; - return r; -} -/* - * Transform point p with perspective division. - */ -Point3 xformpointd(Point3 p, Space *to, Space *from){ - p=xformpoint(p, to, from); - if(p.w!=0){ - p.x/=p.w; - p.y/=p.w; - p.z/=p.w; - p.w=1; - } - return p; -} -/* - * Transform plane p -- same as xformpoint, except multiply on the - * other side by the inverse matrix. - */ -Point3 xformplane(Point3 p, Space *to, Space *from){ - Point3 q, r; - register double *m; - if(from){ - m=&from->tinv[0][0]; - q.x =*m++*p.x; q.y =*m++*p.x; q.z =*m++*p.x; q.w =*m++*p.x; - q.x+=*m++*p.y; q.y+=*m++*p.y; q.z+=*m++*p.y; q.w+=*m++*p.y; - q.x+=*m++*p.z; q.y+=*m++*p.z; q.z+=*m++*p.z; q.w+=*m++*p.z; - q.x+=*m++*p.w; q.y+=*m++*p.w; q.z+=*m++*p.w; q.w+=*m *p.w; - } - else - q=p; - if(to){ - m=&to->t[0][0]; - r.x =*m++*q.x; r.y =*m++*q.x; r.z =*m++*q.x; r.w =*m++*q.x; - r.x+=*m++*q.y; r.y+=*m++*q.y; r.z+=*m++*q.y; r.w+=*m++*q.y; - r.x+=*m++*q.z; r.y+=*m++*q.z; r.z+=*m++*q.z; r.w+=*m++*q.z; - r.x+=*m++*q.w; r.y+=*m++*q.w; r.z+=*m++*q.w; r.w+=*m *q.w; - } - else - r=q; - return r; -} diff --git a/sys/src/libgeometry/triangle.c b/sys/src/libgeometry/triangle.c new file mode 100644 index 000000000..1ed6cfcda --- /dev/null +++ b/sys/src/libgeometry/triangle.c @@ -0,0 +1,40 @@ +#include <u.h> +#include <libc.h> +#include <geometry.h> + +/* 2D */ + +Point2 +centroid(Triangle2 t) +{ + return divpt2(addpt2(t.p0, addpt2(t.p1, t.p2)), 3); +} + +/* + * based on the implementation from: + * + * Dmitry V. Sokolov, “Tiny Renderer: Lesson 2”, + * https://github.com/ssloy/tinyrenderer/wiki/Lesson-2:-Triangle-rasterization-and-back-face-culling + */ +Point3 +barycoords(Triangle2 t, Point2 p) +{ + Point2 p0p1 = subpt2(t.p1, t.p0); + Point2 p0p2 = subpt2(t.p2, t.p0); + Point2 pp0 = subpt2(t.p0, p); + + Point3 v = crossvec3(Vec3(p0p2.x, p0p1.x, pp0.x), Vec3(p0p2.y, p0p1.y, pp0.y)); + + /* handle degenerate triangles—i.e. the ones where every point lies on the same line */ + if(fabs(v.z) < 1) + return Pt3(-1,-1,-1,1); + return Pt3(1 - (v.x + v.y)/v.z, v.y/v.z, v.x/v.z, 1); +} + +/* 3D */ + +Point3 +centroid3(Triangle3 t) +{ + return divpt3(addpt3(t.p0, addpt3(t.p1, t.p2)), 3); +} diff --git a/sys/src/libgeometry/tstack.c b/sys/src/libgeometry/tstack.c deleted file mode 100644 index 6867cd4d4..000000000 --- a/sys/src/libgeometry/tstack.c +++ /dev/null @@ -1,169 +0,0 @@ -/*% cc -gpc % - * These transformation routines maintain stacks of transformations - * and their inverses. - * t=pushmat(t) push matrix stack - * t=popmat(t) pop matrix stack - * rot(t, a, axis) multiply stack top by rotation - * qrot(t, q) multiply stack top by rotation, q is unit quaternion - * scale(t, x, y, z) multiply stack top by scale - * move(t, x, y, z) multiply stack top by translation - * xform(t, m) multiply stack top by m - * ixform(t, m, inv) multiply stack top by m. inv is the inverse of m. - * look(t, e, l, u) multiply stack top by viewing transformation - * persp(t, fov, n, f) multiply stack top by perspective transformation - * viewport(t, r, aspect) - * multiply stack top by window->viewport transformation. - */ -#include <u.h> -#include <libc.h> -#include <draw.h> -#include <geometry.h> -Space *pushmat(Space *t){ - Space *v; - v=malloc(sizeof(Space)); - if(t==0){ - ident(v->t); - ident(v->tinv); - } - else - *v=*t; - v->next=t; - return v; -} -Space *popmat(Space *t){ - Space *v; - if(t==0) return 0; - v=t->next; - free(t); - return v; -} -void rot(Space *t, double theta, int axis){ - double s=sin(radians(theta)), c=cos(radians(theta)); - Matrix m, inv; - register i=(axis+1)%3, j=(axis+2)%3; - ident(m); - m[i][i] = c; - m[i][j] = -s; - m[j][i] = s; - m[j][j] = c; - ident(inv); - inv[i][i] = c; - inv[i][j] = s; - inv[j][i] = -s; - inv[j][j] = c; - ixform(t, m, inv); -} -void qrot(Space *t, Quaternion q){ - Matrix m, inv; - int i, j; - qtom(m, q); - for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i]; - ixform(t, m, inv); -} -void scale(Space *t, double x, double y, double z){ - Matrix m, inv; - ident(m); - m[0][0]=x; - m[1][1]=y; - m[2][2]=z; - ident(inv); - inv[0][0]=1/x; - inv[1][1]=1/y; - inv[2][2]=1/z; - ixform(t, m, inv); -} -void move(Space *t, double x, double y, double z){ - Matrix m, inv; - ident(m); - m[0][3]=x; - m[1][3]=y; - m[2][3]=z; - ident(inv); - inv[0][3]=-x; - inv[1][3]=-y; - inv[2][3]=-z; - ixform(t, m, inv); -} -void xform(Space *t, Matrix m){ - Matrix inv; - if(invertmat(m, inv)==0) return; - ixform(t, m, inv); -} -void ixform(Space *t, Matrix m, Matrix inv){ - matmul(t->t, m); - matmulr(t->tinv, inv); -} -/* - * multiply the top of the matrix stack by a view-pointing transformation - * with the eyepoint at e, looking at point l, with u at the top of the screen. - * The coordinate system is deemed to be right-handed. - * The generated transformation transforms this view into a view from - * the origin, looking in the positive y direction, with the z axis pointing up, - * and x to the right. - */ -void look(Space *t, Point3 e, Point3 l, Point3 u){ - Matrix m, inv; - Point3 r; - l=unit3(sub3(l, e)); - u=unit3(vrem3(sub3(u, e), l)); - r=cross3(l, u); - /* make the matrix to transform from (rlu) space to (xyz) space */ - ident(m); - m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z; - m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z; - m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z; - ident(inv); - inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x; - inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y; - inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z; - ixform(t, m, inv); - move(t, -e.x, -e.y, -e.z); -} -/* - * generate a transformation that maps the frustum with apex at the origin, - * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. - * plane y=n maps to y'=-1, y=f maps to y'=1 - */ -int persp(Space *t, double fov, double n, double f){ - Matrix m; - double z; - if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */ - return -1; - z=1/tan(radians(fov)/2); - m[0][0]=z; m[0][1]=0; m[0][2]=0; m[0][3]=0; - m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]); - m[2][0]=0; m[2][1]=0; m[2][2]=z; m[2][3]=0; - m[3][0]=0; m[3][1]=1; m[3][2]=0; m[3][3]=0; - xform(t, m); - return 0; -} -/* - * Map the unit-cube window into the given screen viewport. - * r has min at the top left, max just outside the lower right. Aspect is the - * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) - * The whole window is transformed to fit centered inside the viewport with equal - * slop on either top and bottom or left and right, depending on the viewport's - * aspect ratio. - * The window is viewed down the y axis, with x to the left and z up. The viewport - * has x increasing to the right and y increasing down. The window's y coordinates - * are mapped, unchanged, into the viewport's z coordinates. - */ -void viewport(Space *t, Rectangle r, double aspect){ - Matrix m; - double xc, yc, wid, hgt, scale; - xc=.5*(r.min.x+r.max.x); - yc=.5*(r.min.y+r.max.y); - wid=(r.max.x-r.min.x)*aspect; - hgt=r.max.y-r.min.y; - scale=.5*(wid<hgt?wid:hgt); - ident(m); - m[0][0]=scale; - m[0][3]=xc; - m[1][1]=0; - m[1][2]=-scale; - m[1][3]=yc; - m[2][1]=1; - m[2][2]=0; - /* should get inverse by hand */ - xform(t, m); -} diff --git a/sys/src/libgeometry/utils.c b/sys/src/libgeometry/utils.c new file mode 100644 index 000000000..9825923c8 --- /dev/null +++ b/sys/src/libgeometry/utils.c @@ -0,0 +1,15 @@ +#include <u.h> +#include <libc.h> +#include <geometry.h> + +double +flerp(double a, double b, double t) +{ + return a + (b - a)*t; +} + +double +fclamp(double n, double min, double max) +{ + return n < min? min: n > max? max: n; +} |