summaryrefslogtreecommitdiff
path: root/sys/src/libsat/satsolve.c
diff options
context:
space:
mode:
authoraiju <devnull@localhost>2018-03-17 19:26:26 +0000
committeraiju <devnull@localhost>2018-03-17 19:26:26 +0000
commitc2c9562e3c2994d87f65ab09779190d1e7e09517 (patch)
tree6dc692d7358361da761bae454a1a858ec4c412d5 /sys/src/libsat/satsolve.c
parente0be49d7f1dcb50048bead1b7d62633448482246 (diff)
add libsat
Diffstat (limited to 'sys/src/libsat/satsolve.c')
-rw-r--r--sys/src/libsat/satsolve.c887
1 files changed, 887 insertions, 0 deletions
diff --git a/sys/src/libsat/satsolve.c b/sys/src/libsat/satsolve.c
new file mode 100644
index 000000000..94dec8598
--- /dev/null
+++ b/sys/src/libsat/satsolve.c
@@ -0,0 +1,887 @@
+#include <u.h>
+#include <libc.h>
+#include <sat.h>
+#include "impl.h"
+
+/* the solver follows Algorithm C from Knuth's The Art of Computer Programming, Vol. 4, Fascicle 6 */
+
+#define verbosestate 0
+#define verboseforcing 0
+#define verboseconflict 0
+#define paranoia 0
+#define sanity(s) if(paranoia) satsanity(s)
+
+void
+sataddtrail(SATSolve *s, int l)
+{
+ s->trail[s->ntrail++] = l;
+ s->lit[l].val = 1;
+ s->lit[NOT(l)].val = 0;
+ s->var[VAR(l)].lvl = s->lvl;
+ s->agility -= s->agility >> 13;
+ if(((s->var[VAR(l)].flags ^ l) & 1) != 0)
+ s->agility += 1<<19;
+ if(verbosestate) satprintstate(s);
+}
+
+/* compute watchlists from scratch */
+static void
+rewatch(SATSolve *s)
+{
+ SATLit *l;
+ SATClause *c;
+ int i, j, x;
+
+ for(l = s->lit; l < s->lit + 2*s->nvar; l++)
+ l->watch = nil;
+ for(c = s->cl; c != nil; c = c->next)
+ for(i = 0; i < 2; i++){
+ if(s->lit[c->l[i]].val == 0)
+ for(j = 2; j < c->n; j++)
+ if(s->lit[c->l[j]].val != 0){
+ x = c->l[i], c->l[i] = c->l[j], c->l[j] = x;
+ break;
+ }
+ c->watch[i] = s->lit[c->l[i]].watch;
+ s->lit[c->l[i]].watch = c;
+ }
+}
+
+/* jump back to decision level d */
+void
+satbackjump(SATSolve *s, int d)
+{
+ int l;
+ SATVar *v;
+
+ if(s->lvl == d) return;
+ while(s->ntrail > s->decbd[d + 1]){
+ l = s->trail[--s->ntrail];
+ v = &s->var[VAR(l)];
+ if((v->flags & VARUSER) != 0){ /* don't delete user assignments */
+ s->ntrail++;
+ break;
+ }
+ s->lit[l].val = -1;
+ s->lit[NOT(l)].val = -1;
+ v->flags = v->flags & ~1 | l & 1;
+ v->lvl = -1;
+ v->reason = nil;
+ v->isbinreason = 0;
+ if(v->heaploc < 0)
+ satheapput(s, v);
+ }
+ s->lvl = d;
+ if(s->forptr > s->ntrail) s->forptr = s->ntrail;
+ if(s->binptr > s->ntrail) s->binptr = s->ntrail;
+ if(verbosestate) satprintstate(s);
+}
+
+static void
+solvinit(SATSolve *s)
+{
+ satdebuginit(s);
+ satheapreset(s);
+ s->decbd = satrealloc(s, s->decbd, s->nvar * sizeof(int));
+ s->decbd[0] = 0;
+ s->trail = satrealloc(s, s->trail, sizeof(int) * s->nvar);
+ s->fullrlits = satrealloc(s, s->fullrlits, sizeof(int) * s->nvar);
+ s->lvlstamp = satrealloc(s, s->lvlstamp, sizeof(int) * s->nvar);
+ memset(s->lvlstamp, 0, sizeof(int) * s->nvar);
+ if(s->cflclalloc == 0){
+ s->cflcl = satrealloc(s, s->cflcl, CFLCLALLOC * sizeof(int));
+ s->cflclalloc = CFLCLALLOC;
+ }
+ rewatch(s);
+
+ s->conflicts = 0;
+ s->nextpurge = s->purgeΔ;
+ s->purgeival = s->purgeΔ;
+ s->nextflush = 1;
+ s->flushu = 1;
+ s->flushv = 1;
+ s->flushθ = s->flushψ;
+ s->agility = 0;
+
+ satbackjump(s, 0);
+ s->forptr = 0;
+ s->binptr = 0;
+}
+
+void
+satcleanup(SATSolve *s, int all)
+{
+ SATBlock *b, *bn;
+
+ if(all){
+ *s->lastp[0] = nil;
+ s->learncl = nil;
+ s->lastp[1] = &s->learncl;
+ s->ncl = s->ncl0;
+ }
+ for(b = s->bl[1].next; b != &s->bl[1]; b = bn){
+ bn = b->next;
+ if(b->last != nil && !all) continue;
+ b->next->prev = b->prev;
+ b->prev->next = b->next;
+ free(b);
+ }
+ s->lastbl = s->bl[1].prev;
+ free(s->fullrlits);
+ s->fullrlits = nil;
+ free(s->lvlstamp);
+ s->lvlstamp = nil;
+ free(s->cflcl);
+ s->cflcl = nil;
+ s->cflclalloc = 0;
+}
+
+static void
+stampoverflow(SATSolve *s)
+{
+ int i;
+
+ for(i = 0; i < s->nvar; i++){
+ s->var[i].stamp = 0;
+ s->lvlstamp[i] = 0;
+ }
+ s->stamp = -2;
+}
+
+/* "bump" the variable, i.e. increase its activity score. reduce all score when one exceeds MAXACTIVITY (1e100) */
+static void
+varbump(SATSolve *s, SATVar *v)
+{
+ v->activity += s->Δactivity;
+ satreheap(s, v);
+ if(v->activity < MAXACTIVITY) return;
+ for(v = s->var; v < s->var + s->nvar; v++)
+ if(v->activity != 0){
+ v->activity /= MAXACTIVITY;
+ if(v->activity < ε)
+ v->activity = ε;
+ }
+ s->Δactivity /= MAXACTIVITY;
+}
+
+/* ditto for clauses */
+static void
+clausebump(SATSolve *s, SATClause *c)
+{
+ c->activity += s->Δclactivity;
+ if(c->activity < MAXACTIVITY) return;
+ for(c = s->cl; c != nil; c = c->next)
+ if(c->activity != 0){
+ c->activity /= MAXACTIVITY;
+ if(c->activity < ε)
+ c->activity = ε;
+ }
+ s->Δclactivity /= MAXACTIVITY;
+}
+
+/* pick a literal. normally we pick the variable with highest activity from the heap. sometimes we goof and pick a random one. */
+static void
+decision(SATSolve *s)
+{
+ SATVar *v;
+
+ s->decbd[++s->lvl] = s->ntrail;
+ if((uint)s->randfn(s->randaux) < s->goofprob){
+ v = s->heap[satnrand(s, s->nheap)];
+ if(v->lvl < 0)
+ goto gotv;
+ }
+ do
+ v = satheaptake(s);
+ while(v->lvl >= 0);
+gotv:
+ sataddtrail(s, 2 * (v - s->var) + (v->flags & VARPHASE));
+}
+
+/* go through the watchlist of a literal that just turned out false. */
+/* full == 1 records the first conflict and goes on rather than aborting immediately */
+static SATClause *
+forcing(SATSolve *s, int l, int full)
+{
+ SATClause **cp, *rc, *c, *xp;
+ int v0;
+ int x, j;
+
+ cp = &s->lit[l].watch;
+ rc = nil;
+ if(verboseforcing) print("forcing literal %d\n", signf(l));
+ while(c = *cp, c != nil){
+ if(l == c->l[0]){
+ /* this swap implies that the reason r for a literal l always has r->l[0]==l */
+ x = c->l[1], c->l[1] = c->l[0], c->l[0] = x;
+ xp = c->watch[1], c->watch[1] = c->watch[0], c->watch[0] = xp;
+ }
+ assert(c->l[1] == l);
+ v0 = s->lit[c->l[0]].val;
+ if(v0 > 0) /* the clause is true anyway */
+ goto next;
+ for(j = 2; j < c->n; j++)
+ if(s->lit[c->l[j]].val != 0){
+ /* found another literal to watch for this clause */
+ if(verboseforcing) print("moving clause %+Γ onto watchlist %d\n", c, signf(c->l[j]));
+ *cp = c->watch[1];
+ x = c->l[j], c->l[j] = c->l[1], c->l[1] = x;
+ c->watch[1] = s->lit[x].watch;
+ s->lit[x].watch = c;
+ goto cont;
+ }
+ if(v0 == 0){
+ /* conflict */
+ if(!full) return c;
+ if(rc == nil) rc = c;
+ goto next;
+ }
+ if(verboseforcing) print("inferring %d using clause %+Γ\n", signf(c->l[0]), c);
+ sataddtrail(s, c->l[0]);
+ s->var[VAR(c->l[0])].reason = c;
+ next:
+ cp = &c->watch[1];
+ cont: ;
+ }
+ return rc;
+}
+
+/* forcing() for binary implications */
+static uvlong
+binforcing(SATSolve *s, int l, int full)
+{
+ SATLit *lp;
+ int i, m;
+ uvlong rc;
+
+ lp = &s->lit[l];
+ rc = 0;
+ if(verboseforcing && lp->nbimp > 0) print("forcing literal %d (binary)\n", signf(l));
+ for(i = 0; i < lp->nbimp; i++){
+ m = lp->bimp[i];
+ switch(s->lit[m].val){
+ case -1:
+ if(verboseforcing) print("inferring %d using binary clause (%d) ∨ %d\n", signf(m), -signf(l), signf(m));
+ sataddtrail(s, m);
+ s->var[VAR(m)].binreason = NOT(l);
+ s->var[VAR(m)].isbinreason = 1;
+ break;
+ case 0:
+ if(verboseforcing) print("conflict (%d) ∨ (%d)\n", -signf(l), signf(m));
+ if(rc == 0) rc = (uvlong)NOT(l) << 32 | (uint)m;
+ if(!full) return rc;
+ break;
+ }
+ }
+ return rc;
+}
+
+/* check if we can discard the previously learned clause because the current one subsumes it */
+static int
+checkdiscard(SATSolve *s)
+{
+ SATClause *c;
+ SATVar *v;
+ int q, j;
+
+ if(s->lastp[1] == &s->learncl) return 0;
+ c = (SATClause*) ((uchar*) s->lastp[1] - (uchar*) &((SATClause*)0)->next);
+ if(s->lit[c->l[0]].val >= 0) return 0; /* clause is a reason, hands off */
+ q = s->ncflcl;
+ for(j = c->n - 1; q > 0 && j >= q; j--){
+ v = &s->var[VAR(c->l[j])];
+ /* check if literal is in the current clause */
+ if(c->l[j] == s->cflcl[0] || (uint)v->lvl <= s->cfllvl && v->stamp == s->stamp)
+ q--;
+ }
+ return q == 0;
+}
+
+/* add the clause we just learned to our collection */
+static SATClause *
+learn(SATSolve *s, int notriv)
+{
+ SATClause *r;
+ int i, l, triv;
+
+ /* clauses that are too complicated are not worth it. learn the trivial clause (all decisions negated) instead */
+ if(triv = !notriv && s->ncflcl > s->lvl + s->trivlim){
+ assert(s->lvl + 1 <= s->cflclalloc);
+ for(i = 1; i <= s->lvl; i++)
+ s->cflcl[i] = NOT(s->trail[s->decbd[s->lvl + 1 - i]]);
+ s->ncflcl = s->lvl + 1;
+ }
+ if(s->ncflcl == 1) /* unit clauses are handled by putting them on the trail in conflict() */
+ return nil;
+ if(!triv && checkdiscard(s))
+ r = satreplclause(s, s->ncflcl);
+ else
+ r = satnewclause(s, s->ncflcl, 1);
+ r->n = s->ncflcl;
+ memcpy(r->l, s->cflcl, s->ncflcl * sizeof(int));
+ for(i = 0; i < 2; i++){
+ l = r->l[i];
+ r->watch[i] = s->lit[l].watch;
+ s->lit[l].watch = r;
+ }
+ return r;
+}
+
+/* recursive procedure to determine if a literal is redundant.
+ * to avoid repeated work, each known redundant literal is stamped with stamp+1
+ * and each known nonredundant literal is stamped with stamp+2.
+ */
+static int
+redundant(SATSolve *s, int l)
+{
+ SATVar *v, *w;
+ SATClause *c;
+ int i, r;
+
+ v = &s->var[VAR(l)];
+ if(v->isbinreason){
+ /* stupid special case code */
+ r = v->binreason;
+ w = &s->var[VAR(r)];
+ if(w->lvl != 0){
+ if(w->stamp == s->stamp + 2)
+ return 0;
+ if(w->stamp < s->stamp && (s->lvlstamp[w->lvl] < s->stamp || !redundant(s, r))){
+ w->stamp = s->stamp + 2;
+ return 0;
+ }
+ }
+ v->stamp = s->stamp + 1;
+ return 1;
+ }
+ if(v->reason == nil) return 0; /* decision literals are never redundant */
+ c = v->reason;
+ for(i = 0; i < c->n; i++){
+ if(c->l[i] == NOT(l)) continue;
+ w = &s->var[VAR(c->l[i])];
+ if(w->lvl == 0)
+ continue; /* literals at level 0 are redundant */
+ if(w->stamp == s->stamp + 2)
+ return 0;
+ /* if the literal is not in the clause or known redundant, check if it is redundant */
+ /* we can skip the check if the level is not stamped: */
+ /* if there are no literals at the same level in the clause, it must be nonredundant */
+ if(w->stamp < s->stamp && (s->lvlstamp[w->lvl] < s->stamp || !redundant(s, c->l[i]))){
+ w->stamp = s->stamp + 2;
+ return 0;
+ }
+ }
+ v->stamp = s->stamp + 1;
+ return 1;
+}
+
+/* "blitting" a literal means to either add it to the conflict clause
+ * (if v->lvl < s->lvl) or to increment the counter of literals to be
+ * resolved, plus some bookkeeping. */
+static void
+blit(SATSolve *s, int l)
+{
+ SATVar *v;
+ int p;
+
+ v = &s->var[VAR(l)];
+ if(v->stamp == s->stamp) return;
+ v->stamp = s->stamp;
+ p = v->lvl;
+ if(p == 0) return;
+ if(verboseconflict) print("stamp %d %s (ctr=%d)\n", signf(l), p == s->lvl ? "and increment" : "and collect", s->cflctr);
+ varbump(s, v);
+ if(p == s->lvl){
+ s->cflctr++;
+ return;
+ }
+ if(s->ncflcl >= s->cflclalloc){
+ s->cflcl = satrealloc(s, s->cflcl, (s->cflclalloc + CFLCLALLOC) * sizeof(int));
+ s->cflclalloc += CFLCLALLOC;
+ }
+ s->cflcl[s->ncflcl++] = l;
+ if(p > s->cfllvl) s->cfllvl = p;
+ /* lvlstamp[p] == stamp if there is exactly one literal and ==stamp+1 if there is more than one literal on level p */
+ if(s->lvlstamp[p] <= s->stamp)
+ s->lvlstamp[p] = s->stamp + (s->lvlstamp[p] == s->stamp);
+}
+
+/* to resolve a conflict, we start with the conflict clause and use
+ * resolution (a ∨ b and ¬a ∨ c imply b ∨ c) with the reasons for the
+ * literals to remove all but one literal at the current level. this
+ * gives a new "learned" clause with all literals false and we jump back
+ * to the second-highest level in it. at this point, the clause implies
+ * the one remaining literal and we can continue.
+ * to do this quickly, rather than explicitly apply resolution, we keep a
+ * counter of literals at the highest level (unresolved literals) and an
+ * array with all other literals (which will become the learned clause). */
+static void
+conflict(SATSolve *s, SATClause *c, uvlong bin, int full)
+{
+ int i, j, l, p, *nl, found;
+ SATVar *v;
+ SATClause *r;
+
+ if(verboseconflict) satprintstate(s);
+ /* choose a new unique stamp value */
+ if(s->stamp >= (uint)-3)
+ stampoverflow(s);
+ s->stamp += 3;
+ s->ncflcl = 1;
+ s->cflctr = 0;
+ s->cfllvl = 0;
+ /* we start by blitting each literal in the conflict clause */
+ if(c != nil){
+ clausebump(s, c);
+ for(i = 0; i < c->n; i++)
+ blit(s, c->l[i]);
+ /* if there is only one literal l at the current level, we should have inferred ¬l at a lower level (bug). */
+ if(s->cflctr <= 1){
+ satprintstate(s);
+ print("conflict clause %+Γ\n", c);
+ assert(s->cflctr > 1);
+ }
+ }else{
+ blit(s, bin);
+ blit(s, bin>>32);
+ if(s->cflctr <= 1){
+ satprintstate(s);
+ print("binary conflict clause %d ∨ %d\n", (int)(bin>>32), (int)bin);
+ assert(s->cflctr > 1);
+ }
+ }
+ /* now we go backwards through the trail, decrementing the unresolved literal counter at each stamped literal */
+ /* and blitting the literals in their reason */
+ for(i = s->ntrail; --i >= 0; ){
+ v = &s->var[VAR(s->trail[i])];
+ if(v->stamp != s->stamp) continue;
+ if(verboseconflict) print("trail literal %d\n", signf(s->trail[i]));
+ if(--s->cflctr == 0) break;
+ if(v->isbinreason)
+ blit(s, v->binreason);
+ else if((r = v->reason) != nil){
+ clausebump(s, r);
+ for(j = 0; j < r->n; j++)
+ blit(s, r->l[j]);
+ }
+ }
+ /* i should point to the one remaining literal at the current level */
+ assert(i >= 0);
+ nl = s->cflcl;
+ nl[0] = NOT(s->trail[i]);
+ found = 0;
+ /* delete redundant literals. note we must watch a literal at cfllvl, so put it in l[1]. */
+ for(i = 1, j = 1; i < s->ncflcl; i++){
+ l = nl[i];
+ p = s->var[VAR(nl[i])].lvl;
+ /* lvlstamp[p] != s->stamp + 1 => only one literal at level p => must be nonredundant */
+ if(s->lvlstamp[p] != s->stamp + 1 || !redundant(s, l))
+ if(found || p < s->cfllvl)
+ nl[j++] = nl[i];
+ else{
+ /* watch this literal */
+ l = nl[i], nl[j++] = nl[1], nl[1] = l;
+ found = 1;
+ }
+ }
+ s->ncflcl = j;
+ if(!full){
+ /* normal mode: jump back and add to trail right away */
+ satbackjump(s, s->cfllvl);
+ sataddtrail(s, nl[0]);
+ }else{
+ /* purging: record minimum cfllvl and literals at that level */
+ if(s->cfllvl < s->fullrlvl){
+ s->fullrlvl = s->cfllvl;
+ s->nfullrlits = 0;
+ }
+ s->fullrlits[s->nfullrlits++] = nl[0];
+ }
+ r = learn(s, full);
+ if(!full && r != nil)
+ s->var[VAR(nl[0])].reason = r;
+ if(verboseconflict)
+ if(r != nil)
+ print("learned %+Γ\n", r);
+ else
+ print("learned %d\n", signf(nl[0]));
+ s->Δactivity *= s->varρ;
+ s->Δclactivity *= s->clauseρ;
+ s->conflicts++;
+}
+
+/* to purge, we need a fullrun that assigns values to all variables.
+ * during this we record the first conflict at each level, to be resolved
+ * later. otherwise this is just a copy of the main loop which never
+ * purges or flushes. */
+static int
+fullrun(SATSolve *s)
+{
+ int l;
+ uvlong b;
+ SATClause *c;
+
+ while(s->ntrail < s->nvar){
+ decision(s);
+ re:
+ while(s->binptr < s->ntrail){
+ l = s->trail[s->binptr++];
+ b = binforcing(s, l, 1);
+ if(b != 0){
+ if(s->lvl == 0){
+ s->unsat = 1;
+ return -1;
+ }
+ if(s->nfullrcfl == 0 || s->lvl > CFLLVL(s->fullrcfl[s->nfullrcfl-1])){
+ s->fullrcfl = satrealloc(s, s->fullrcfl, sizeof(SATConflict) * (s->nfullrcfl + 1));
+ s->fullrcfl[s->nfullrcfl].lvl = 1<<31 | s->lvl;
+ s->fullrcfl[s->nfullrcfl++].b = b;
+ }
+ }
+ sanity(s);
+ }
+ while(s->forptr < s->ntrail){
+ l = s->trail[s->forptr++];
+ c = forcing(s, NOT(l), 1);
+ if(c != nil){
+ if(s->lvl == 0){
+ s->unsat = 1;
+ return -1;
+ }
+ if(s->nfullrcfl == 0 || s->lvl > CFLLVL(s->fullrcfl[s->nfullrcfl-1])){
+ s->fullrcfl = satrealloc(s, s->fullrcfl, sizeof(SATConflict) * (s->nfullrcfl + 1));
+ s->fullrcfl[s->nfullrcfl].lvl = s->lvl;
+ s->fullrcfl[s->nfullrcfl++].c = c;
+ }
+ }
+ }
+ if(s->binptr < s->ntrail) goto re;
+ }
+ return 0;
+}
+
+/* assign range scores to all clauses.
+ * p == number of levels that have positive literals in the clause.
+ * r == number of levels that have literals in the clause.
+ * range == min(floor(16 * (p + α (r - p))), 255) with magic constant α. */
+static void
+ranges(SATSolve *s)
+{
+ SATClause *c;
+ int p, r, k, l, v;
+ uint ci;
+
+ ci = 2;
+ memset(s->lvlstamp, 0, sizeof(int) * s->nvar);
+ memset(s->rangecnt, 0, sizeof(s->rangecnt));
+ for(c = s->learncl; c != nil; c = c->next, ci += 2){
+ if(!s->var[VAR(c->l[0])].binreason && s->var[VAR(c->l[0])].reason == c){
+ c->range = 0;
+ s->rangecnt[0]++;
+ continue;
+ }
+ p = 0;
+ r = 0;
+ for(k = 0; k < c->n; k++){
+ l = c->l[k];
+ v = s->var[VAR(l)].lvl;
+ if(v == 0){
+ if(s->lit[l].val == 1){
+ c->range = 256;
+ goto next;
+ }
+ }else{
+ if(s->lvlstamp[v] < ci){
+ s->lvlstamp[v] = ci;
+ r++;
+ }
+ if(s->lvlstamp[v] == ci && s->lit[l].val == 1){
+ s->lvlstamp[v] = ci + 1;
+ p++;
+ }
+ }
+ }
+ r = 16 * (p + s->purgeα * (r - p));
+ if(r > 255) r = 255;
+ c->range = r;
+ s->rangecnt[r]++;
+ next: ;
+ }
+}
+
+/* resolve conflicts found during fullrun() */
+static void
+fullrconflicts(SATSolve *s)
+{
+ SATConflict *cfl;
+ int i;
+
+ s->fullrlvl = s->lvl;
+ s->nfullrlits = 0;
+ for(cfl = &s->fullrcfl[s->nfullrcfl - 1]; cfl >= s->fullrcfl; cfl--){
+ satbackjump(s, CFLLVL(*cfl));
+ if(cfl->lvl < 0)
+ conflict(s, nil, cfl->b, 1);
+ else
+ conflict(s, cfl->c, 0, 1);
+ }
+ satbackjump(s, 0);
+ if(s->fullrlvl == 0)
+ for(i = 0; i < s->nfullrlits; i++)
+ sataddtrail(s, s->fullrlits[i]);
+ free(s->fullrcfl);
+ s->fullrcfl = nil;
+}
+
+/* note that nil > *, this simplifies the algorithm by having nil "bubble" to the top */
+static int
+actgt(SATClause *a, SATClause *b)
+{
+ if(b == nil) return 0;
+ if(a == nil) return 1;
+ return a->activity > b->activity || a->activity == b->activity && a > b;
+}
+
+/* select n clauses to keep
+ * first we find the upper limit j on the range score
+ * to get the exact number, we move htot clauses from j to j+1
+ * to this end, we put them in a max-heap of size htot, sorted by activity,
+ * continually replacing the largest element if we find a less active clause.
+ * the heap starts out filled with nil and the nil are replaced during the first
+ * htot iterations. */
+#define LEFT(i) (2*(i)+1)
+#define RIGHT(i) (2*(i)+2)
+static int
+judgement(SATSolve *s, int n)
+{
+ int cnt, i, j, htot, m;
+ SATClause *c, **h, *z;
+
+ cnt = 0;
+ for(j = 0; j < 256; j++){
+ cnt += s->rangecnt[j];
+ if(cnt >= n) break;
+ }
+ if(j == 256) return j;
+ if(cnt > n){
+ htot = cnt - n;
+ h = satrealloc(s, nil, sizeof(SATClause *) * htot);
+ memset(h, 0, sizeof(SATClause *) * htot);
+ for(c = s->learncl; c != nil; c = c->next){
+ if(c->range != j || actgt(c, h[0])) continue;
+ h[0] = c;
+ m = 0;
+ for(;;){
+ i = m;
+ if(LEFT(i) < htot && actgt(h[LEFT(i)], h[m])) m = LEFT(i);
+ if(RIGHT(i) < htot && actgt(h[RIGHT(i)], h[m])) m = RIGHT(i);
+ if(i == m) break;
+ z = h[i], h[i] = h[m], h[m] = z;
+ }
+ }
+ for(i = 0; i < htot; i++)
+ if(h[i] != nil)
+ h[i]->range = j + 1;
+ free(h);
+ }
+ return j;
+}
+
+/* during purging we remove permanently false literals from learned clauses.
+ * returns 1 if the clause can be deleted entirely. */
+static int
+cleanupclause(SATSolve *s, SATClause *c)
+{
+ int i, k;
+
+ for(i = 0; i < c->n; i++)
+ if(s->lit[c->l[i]].val == 0)
+ break;
+ if(i == c->n) return 0;
+ for(k = i; i < c->n; i++)
+ if(s->lit[c->l[i]].val != 0)
+ c->l[k++] = c->l[i];
+ c->n = k;
+ if(k > 1) return 0;
+ if(k == 0)
+ s->unsat = 1;
+ else if(s->lit[c->l[0]].val < 0)
+ sataddtrail(s, c->l[0]);
+ return 1;
+}
+
+/* delete clauses by overwriting them. don't delete empty blocks; we're going to fill them up soon enough again. */
+static void
+execution(SATSolve *s, int j)
+{
+ SATClause *c, *n, **cp, *p;
+ SATBlock *b;
+ SATVar *v0;
+ int f, sz;
+
+ b = s->bl[1].next;
+ p = (SATClause*) b->data;
+ s->ncl = s->ncl0;
+ cp = &s->learncl;
+ for(c = p; c != nil; c = n){
+ n = c->next;
+ if(c->range > j || cleanupclause(s, c))
+ continue;
+ sz = sizeof(SATClause) + (c->n - 1) * sizeof(int);
+ f = (uchar*)b + SATBLOCKSZ - (uchar*)p;
+ if(f < sz){
+ memset(p, 0, f);
+ b = b->next;
+ assert(b != &s->bl[1]);
+ p = (SATClause *) b->data;
+ }
+ b->last = p;
+ /* update reason field of the first variable (if applicable) */
+ v0 = &s->var[VAR(c->l[0])];
+ if(!v0->isbinreason && v0->reason == c)
+ v0->reason = p;
+ memmove(p, c, sz);
+ *cp = p;
+ cp = &p->next;
+ p = (void*)((uintptr)p + sz + CLAUSEALIGN - 1 & -CLAUSEALIGN);
+ b->end = p;
+ s->ncl++;
+ }
+ *cp = nil;
+ *s->lastp[0] = s->learncl;
+ s->lastp[1] = cp;
+ s->lastbl = b;
+ f = (uchar*)b + SATBLOCKSZ - (uchar*)p;
+ memset(p, 0, f);
+ for(b = b->next; b != &s->bl[1]; b = b->next){
+ b->last = nil;
+ b->end = b->data;
+ }
+}
+
+static void
+thepurge(SATSolve *s)
+{
+ int nkeep, i, j;
+ SATVar *v;
+
+ s->purgeival += s->purgeδ;
+ s->nextpurge = s->conflicts + s->purgeival;
+ nkeep = (s->ncl - s->ncl0) / 2;
+ for(i = 0; i < s->ntrail; i++){
+ v = &s->var[VAR(s->trail[i])];
+ if(!v->isbinreason && v->reason != nil)
+ nkeep++;
+ }
+ if(nkeep <= 0) return; /* shouldn't happen */
+ s->nfullrcfl = 0;
+ if(fullrun(s) < 0){ /* accidentally determined UNSAT during fullrun() */
+ free(s->fullrcfl);
+ s->fullrcfl = nil;
+ return;
+ }
+ ranges(s);
+ fullrconflicts(s);
+ j = judgement(s, nkeep);
+ execution(s, j);
+ rewatch(s);
+}
+
+/* to avoid getting stuck, flushing backs up the trail to remove low activity variables.
+ * don't worry about throwing out high activity ones, they'll get readded quickly. */
+static void
+theflush(SATSolve *s)
+{
+ double actk;
+ int dd, l;
+
+ /* "reluctant doubling" wizardry to determine when to flush */
+ if((s->flushu & -s->flushu) == s->flushv){
+ s->flushu++;
+ s->flushv = 1;
+ s->flushθ = s->flushψ;
+ }else{
+ s->flushv *= 2;
+ s->flushθ += s->flushθ >> 4;
+ }
+ s->nextflush = s->conflicts + s->flushv;
+ if(s->agility > s->flushθ) return; /* don't flush when we're too busy */
+ /* clean up the heap so that a free variable is at the top */
+ while(s->nheap > 0 && s->heap[0]->lvl >= 0)
+ satheaptake(s);
+ if(s->nheap == 0) return; /* shouldn't happen */
+ actk = s->heap[0]->activity;
+ for(dd = 0; dd < s->lvl; dd++){
+ l = s->trail[s->decbd[dd+1]];
+ if(s->var[VAR(l)].activity < actk)
+ break;
+ }
+ satbackjump(s, dd);
+}
+
+int
+satsolve(SATSolve *s)
+{
+ int l;
+ SATClause *c;
+ uvlong b;
+
+ if(s == nil) return 1;
+ if(s->scratched) return -1;
+ if(s->nvar == 0) return 1;
+ solvinit(s);
+
+ while(!s->unsat){
+ re:
+ while(s->binptr < s->ntrail){
+ l = s->trail[s->binptr++];
+ b = binforcing(s, l, 0);
+ sanity(s);
+ if(b != 0){
+ if(s->lvl == 0) goto unsat;
+ conflict(s, nil, b, 0);
+ sanity(s);
+ }
+ }
+ while(s->forptr < s->ntrail){
+ l = s->trail[s->forptr++];
+ c = forcing(s, NOT(l), 0);
+ sanity(s);
+ if(c != nil){
+ if(s->lvl == 0) goto unsat;
+ conflict(s, c, 0, 0);
+ sanity(s);
+ }
+ }
+ if(s->binptr < s->ntrail) goto re;
+ if(s->ntrail == s->nvar) goto out;
+ if(s->conflicts >= s->nextpurge)
+ thepurge(s);
+ else if(s->conflicts >= s->nextflush)
+ theflush(s);
+ else
+ decision(s);
+ }
+unsat:
+ s->unsat = 1;
+out:
+ satcleanup(s, 0);
+ return !s->unsat;
+}
+
+void
+satreset(SATSolve *s)
+{
+ int i;
+
+ if(s == nil || s->decbd == nil) return;
+ satbackjump(s, -1);
+ s->lvl = 0;
+ for(i = 0; i < s->nvar; i++){
+ s->var[i].activity = 0;
+ s->var[i].flags |= VARPHASE;
+ }
+ satcleanup(s, 1);
+ s->Δactivity = 1;
+ s->Δclactivity = 1;
+}