summaryrefslogtreecommitdiff
path: root/sys/src/libstdio/dtoa.c
diff options
context:
space:
mode:
authorTaru Karttunen <taruti@taruti.net>2011-03-30 15:46:40 +0300
committerTaru Karttunen <taruti@taruti.net>2011-03-30 15:46:40 +0300
commite5888a1ffdae813d7575f5fb02275c6bb07e5199 (patch)
treed8d51eac403f07814b9e936eed0c9a79195e2450 /sys/src/libstdio/dtoa.c
Import sources from 2011-03-30 iso image
Diffstat (limited to 'sys/src/libstdio/dtoa.c')
-rwxr-xr-xsys/src/libstdio/dtoa.c1293
1 files changed, 1293 insertions, 0 deletions
diff --git a/sys/src/libstdio/dtoa.c b/sys/src/libstdio/dtoa.c
new file mode 100755
index 000000000..26441ded7
--- /dev/null
+++ b/sys/src/libstdio/dtoa.c
@@ -0,0 +1,1293 @@
+/* derived from /netlib/fp/dtoa.c assuming IEEE, Standard C */
+/* kudos to dmg@bell-labs.com, gripes to ehg@bell-labs.com */
+
+/* Let x be the exact mathematical number defined by a decimal
+ * string s. Then atof(s) is the round-nearest-even IEEE
+ * floating point value.
+ * Let y be an IEEE floating point value and let s be the string
+ * printed as %.17g. Then atof(s) is exactly y.
+ */
+#include <u.h>
+#include <libc.h>
+
+static Lock _dtoalk[2];
+#define ACQUIRE_DTOA_LOCK(n) lock(&_dtoalk[n])
+#define FREE_DTOA_LOCK(n) unlock(&_dtoalk[n])
+#define PRIVATE_mem ((2000+sizeof(double)-1)/sizeof(double))
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
+#define FLT_ROUNDS 1
+#define DBL_DIG 15
+#define DBL_MAX_10_EXP 308
+#define DBL_MAX_EXP 1024
+#define FLT_RADIX 2
+#define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
+#define fpword0(x) ((FPdbleword*)&x)->hi
+#define fpword1(x) ((FPdbleword*)&x)->lo
+/* Ten_pmax = floor(P*log(2)/log(5)) */
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
+
+#define Exp_shift 20
+#define Exp_shift1 20
+#define Exp_msk1 0x100000
+#define Exp_msk11 0x100000
+#define Exp_mask 0x7ff00000
+#define P 53
+#define Bias 1023
+#define Emin (-1022)
+#define Exp_1 0x3ff00000
+#define Exp_11 0x3ff00000
+#define Ebits 11
+#define Frac_mask 0xfffff
+#define Frac_mask1 0xfffff
+#define Ten_pmax 22
+#define Bletch 0x10
+#define Bndry_mask 0xfffff
+#define Bndry_mask1 0xfffff
+#define LSB 1
+#define Sign_bit 0x80000000
+#define Log2P 1
+#define Tiny0 0
+#define Tiny1 1
+#define Quick_max 14
+#define Int_max 14
+#define Avoid_Underflow
+
+#define rounded_product(a,b) a *= b
+#define rounded_quotient(a,b) a /= b
+
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+#define Big1 0xffffffff
+
+#define FFFFFFFF 0xffffffffUL
+
+#undef ULint
+
+#define Kmax 15
+
+struct
+Bigint {
+ struct Bigint *next;
+ int k, maxwds, sign, wds;
+ unsigned int x[1];
+};
+
+typedef struct Bigint Bigint;
+
+static Bigint *freelist[Kmax+1];
+
+static Bigint *
+Balloc(int k)
+{
+ int x;
+ Bigint * rv;
+ unsigned int len;
+
+ ACQUIRE_DTOA_LOCK(0);
+ if (rv = freelist[k]) {
+ freelist[k] = rv->next;
+ } else {
+ x = 1 << k;
+ len = (sizeof(Bigint) + (x - 1) * sizeof(unsigned int) + sizeof(double) -1)
+ / sizeof(double);
+ if (pmem_next - private_mem + len <= PRIVATE_mem) {
+ rv = (Bigint * )pmem_next;
+ pmem_next += len;
+ } else
+ rv = (Bigint * )malloc(len * sizeof(double));
+ rv->k = k;
+ rv->maxwds = x;
+ }
+ FREE_DTOA_LOCK(0);
+ rv->sign = rv->wds = 0;
+ return rv;
+}
+
+static void
+Bfree(Bigint *v)
+{
+ if (v) {
+ ACQUIRE_DTOA_LOCK(0);
+ v->next = freelist[v->k];
+ freelist[v->k] = v;
+ FREE_DTOA_LOCK(0);
+ }
+}
+
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+y->wds*sizeof(int) + 2*sizeof(int))
+
+static Bigint *
+multadd(Bigint *b, int m, int a) /* multiply by m and add a */
+{
+ int i, wds;
+ unsigned int carry, *x, y;
+ unsigned int xi, z;
+ Bigint * b1;
+
+ wds = b->wds;
+ x = b->x;
+ i = 0;
+ carry = a;
+ do {
+ xi = *x;
+ y = (xi & 0xffff) * m + carry;
+ z = (xi >> 16) * m + (y >> 16);
+ carry = z >> 16;
+ *x++ = (z << 16) + (y & 0xffff);
+ } while (++i < wds);
+ if (carry) {
+ if (wds >= b->maxwds) {
+ b1 = Balloc(b->k + 1);
+ Bcopy(b1, b);
+ Bfree(b);
+ b = b1;
+ }
+ b->x[wds++] = carry;
+ b->wds = wds;
+ }
+ return b;
+}
+
+static Bigint *
+s2b(const char *s, int nd0, int nd, unsigned int y9)
+{
+ Bigint * b;
+ int i, k;
+ int x, y;
+
+ x = (nd + 8) / 9;
+ for (k = 0, y = 1; x > y; y <<= 1, k++)
+ ;
+ b = Balloc(k);
+ b->x[0] = y9;
+ b->wds = 1;
+
+ i = 9;
+ if (9 < nd0) {
+ s += 9;
+ do
+ b = multadd(b, 10, *s++ - '0');
+ while (++i < nd0);
+ s++;
+ } else
+ s += 10;
+ for (; i < nd; i++)
+ b = multadd(b, 10, *s++ - '0');
+ return b;
+}
+
+static int
+hi0bits(register unsigned int x)
+{
+ register int k = 0;
+
+ if (!(x & 0xffff0000)) {
+ k = 16;
+ x <<= 16;
+ }
+ if (!(x & 0xff000000)) {
+ k += 8;
+ x <<= 8;
+ }
+ if (!(x & 0xf0000000)) {
+ k += 4;
+ x <<= 4;
+ }
+ if (!(x & 0xc0000000)) {
+ k += 2;
+ x <<= 2;
+ }
+ if (!(x & 0x80000000)) {
+ k++;
+ if (!(x & 0x40000000))
+ return 32;
+ }
+ return k;
+}
+
+static int
+lo0bits(unsigned int *y)
+{
+ register int k;
+ register unsigned int x = *y;
+
+ if (x & 7) {
+ if (x & 1)
+ return 0;
+ if (x & 2) {
+ *y = x >> 1;
+ return 1;
+ }
+ *y = x >> 2;
+ return 2;
+ }
+ k = 0;
+ if (!(x & 0xffff)) {
+ k = 16;
+ x >>= 16;
+ }
+ if (!(x & 0xff)) {
+ k += 8;
+ x >>= 8;
+ }
+ if (!(x & 0xf)) {
+ k += 4;
+ x >>= 4;
+ }
+ if (!(x & 0x3)) {
+ k += 2;
+ x >>= 2;
+ }
+ if (!(x & 1)) {
+ k++;
+ x >>= 1;
+ if (!x & 1)
+ return 32;
+ }
+ *y = x;
+ return k;
+}
+
+static Bigint *
+i2b(int i)
+{
+ Bigint * b;
+
+ b = Balloc(1);
+ b->x[0] = i;
+ b->wds = 1;
+ return b;
+}
+
+static Bigint *
+mult(Bigint *a, Bigint *b)
+{
+ Bigint * c;
+ int k, wa, wb, wc;
+ unsigned int * x, *xa, *xae, *xb, *xbe, *xc, *xc0;
+ unsigned int y;
+ unsigned int carry, z;
+ unsigned int z2;
+
+ if (a->wds < b->wds) {
+ c = a;
+ a = b;
+ b = c;
+ }
+ k = a->k;
+ wa = a->wds;
+ wb = b->wds;
+ wc = wa + wb;
+ if (wc > a->maxwds)
+ k++;
+ c = Balloc(k);
+ for (x = c->x, xa = x + wc; x < xa; x++)
+ *x = 0;
+ xa = a->x;
+ xae = xa + wa;
+ xb = b->x;
+ xbe = xb + wb;
+ xc0 = c->x;
+ for (; xb < xbe; xb++, xc0++) {
+ if (y = *xb & 0xffff) {
+ x = xa;
+ xc = xc0;
+ carry = 0;
+ do {
+ z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
+ carry = z >> 16;
+ z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
+ carry = z2 >> 16;
+ Storeinc(xc, z2, z);
+ } while (x < xae);
+ *xc = carry;
+ }
+ if (y = *xb >> 16) {
+ x = xa;
+ xc = xc0;
+ carry = 0;
+ z2 = *xc;
+ do {
+ z = (*x & 0xffff) * y + (*xc >> 16) + carry;
+ carry = z >> 16;
+ Storeinc(xc, z, z2);
+ z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
+ carry = z2 >> 16;
+ } while (x < xae);
+ *xc = z2;
+ }
+ }
+ for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc)
+ ;
+ c->wds = wc;
+ return c;
+}
+
+static Bigint *p5s;
+
+static Bigint *
+pow5mult(Bigint *b, int k)
+{
+ Bigint * b1, *p5, *p51;
+ int i;
+ static int p05[3] = {
+ 5, 25, 125 };
+
+ if (i = k & 3)
+ b = multadd(b, p05[i-1], 0);
+
+ if (!(k >>= 2))
+ return b;
+ if (!(p5 = p5s)) {
+ /* first time */
+ ACQUIRE_DTOA_LOCK(1);
+ if (!(p5 = p5s)) {
+ p5 = p5s = i2b(625);
+ p5->next = 0;
+ }
+ FREE_DTOA_LOCK(1);
+ }
+ for (; ; ) {
+ if (k & 1) {
+ b1 = mult(b, p5);
+ Bfree(b);
+ b = b1;
+ }
+ if (!(k >>= 1))
+ break;
+ if (!(p51 = p5->next)) {
+ ACQUIRE_DTOA_LOCK(1);
+ if (!(p51 = p5->next)) {
+ p51 = p5->next = mult(p5, p5);
+ p51->next = 0;
+ }
+ FREE_DTOA_LOCK(1);
+ }
+ p5 = p51;
+ }
+ return b;
+}
+
+static Bigint *
+lshift(Bigint *b, int k)
+{
+ int i, k1, n, n1;
+ Bigint * b1;
+ unsigned int * x, *x1, *xe, z;
+
+ n = k >> 5;
+ k1 = b->k;
+ n1 = n + b->wds + 1;
+ for (i = b->maxwds; n1 > i; i <<= 1)
+ k1++;
+ b1 = Balloc(k1);
+ x1 = b1->x;
+ for (i = 0; i < n; i++)
+ *x1++ = 0;
+ x = b->x;
+ xe = x + b->wds;
+ if (k &= 0x1f) {
+ k1 = 32 - k;
+ z = 0;
+ do {
+ *x1++ = *x << k | z;
+ z = *x++ >> k1;
+ } while (x < xe);
+ if (*x1 = z)
+ ++n1;
+ } else
+ do
+ *x1++ = *x++;
+ while (x < xe);
+ b1->wds = n1 - 1;
+ Bfree(b);
+ return b1;
+}
+
+static int
+cmp(Bigint *a, Bigint *b)
+{
+ unsigned int * xa, *xa0, *xb, *xb0;
+ int i, j;
+
+ i = a->wds;
+ j = b->wds;
+ if (i -= j)
+ return i;
+ xa0 = a->x;
+ xa = xa0 + j;
+ xb0 = b->x;
+ xb = xb0 + j;
+ for (; ; ) {
+ if (*--xa != *--xb)
+ return * xa < *xb ? -1 : 1;
+ if (xa <= xa0)
+ break;
+ }
+ return 0;
+}
+
+static Bigint *
+diff(Bigint *a, Bigint *b)
+{
+ Bigint * c;
+ int i, wa, wb;
+ unsigned int * xa, *xae, *xb, *xbe, *xc;
+ unsigned int borrow, y;
+ unsigned int z;
+
+ i = cmp(a, b);
+ if (!i) {
+ c = Balloc(0);
+ c->wds = 1;
+ c->x[0] = 0;
+ return c;
+ }
+ if (i < 0) {
+ c = a;
+ a = b;
+ b = c;
+ i = 1;
+ } else
+ i = 0;
+ c = Balloc(a->k);
+ c->sign = i;
+ wa = a->wds;
+ xa = a->x;
+ xae = xa + wa;
+ wb = b->wds;
+ xb = b->x;
+ xbe = xb + wb;
+ xc = c->x;
+ borrow = 0;
+ do {
+ y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(xc, z, y);
+ } while (xb < xbe);
+ while (xa < xae) {
+ y = (*xa & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*xa++ >> 16) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(xc, z, y);
+ }
+ while (!*--xc)
+ wa--;
+ c->wds = wa;
+ return c;
+}
+
+static double
+ulp(double x)
+{
+ register int L;
+ double a;
+
+ L = (fpword0(x) & Exp_mask) - (P - 1) * Exp_msk1;
+ fpword0(a) = L;
+ fpword1(a) = 0;
+ return a;
+}
+
+static double
+b2d(Bigint *a, int *e)
+{
+ unsigned int * xa, *xa0, w, y, z;
+ int k;
+ double d;
+#define d0 fpword0(d)
+#define d1 fpword1(d)
+
+ xa0 = a->x;
+ xa = xa0 + a->wds;
+ y = *--xa;
+ k = hi0bits(y);
+ *e = 32 - k;
+ if (k < Ebits) {
+ d0 = Exp_1 | y >> Ebits - k;
+ w = xa > xa0 ? *--xa : 0;
+ d1 = y << (32 - Ebits) + k | w >> Ebits - k;
+ goto ret_d;
+ }
+ z = xa > xa0 ? *--xa : 0;
+ if (k -= Ebits) {
+ d0 = Exp_1 | y << k | z >> 32 - k;
+ y = xa > xa0 ? *--xa : 0;
+ d1 = z << k | y >> 32 - k;
+ } else {
+ d0 = Exp_1 | y;
+ d1 = z;
+ }
+ret_d:
+#undef d0
+#undef d1
+ return d;
+}
+
+static Bigint *
+d2b(double d, int *e, int *bits)
+{
+ Bigint * b;
+ int de, i, k;
+ unsigned int * x, y, z;
+#define d0 fpword0(d)
+#define d1 fpword1(d)
+
+ b = Balloc(1);
+ x = b->x;
+
+ z = d0 & Frac_mask;
+ d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
+ de = (int)(d0 >> Exp_shift);
+ z |= Exp_msk11;
+ if (y = d1) {
+ if (k = lo0bits(&y)) {
+ x[0] = y | z << 32 - k;
+ z >>= k;
+ } else
+ x[0] = y;
+ i = b->wds = (x[1] = z) ? 2 : 1;
+ } else {
+ k = lo0bits(&z);
+ x[0] = z;
+ i = b->wds = 1;
+ k += 32;
+ }
+ *e = de - Bias - (P - 1) + k;
+ *bits = P - k;
+ return b;
+}
+
+#undef d0
+#undef d1
+
+static double
+ratio(Bigint *a, Bigint *b)
+{
+ double da, db;
+ int k, ka, kb;
+
+ da = b2d(a, &ka);
+ db = b2d(b, &kb);
+ k = ka - kb + 32 * (a->wds - b->wds);
+ if (k > 0)
+ fpword0(da) += k * Exp_msk1;
+ else {
+ k = -k;
+ fpword0(db) += k * Exp_msk1;
+ }
+ return da / db;
+}
+
+static const double
+tens[] = {
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+ 1e20, 1e21, 1e22
+};
+
+static const double
+bigtens[] = {
+ 1e16, 1e32, 1e64, 1e128, 1e256 };
+
+static const double tinytens[] = {
+ 1e-16, 1e-32, 1e-64, 1e-128,
+ 9007199254740992.e-256
+};
+
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
+/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
+#define Scale_Bit 0x10
+#define n_bigtens 5
+
+#define NAN_WORD0 0x7ff80000
+
+#define NAN_WORD1 0
+
+static int
+match(const char **sp, char *t)
+{
+ int c, d;
+ const char * s = *sp;
+
+ while (d = *t++) {
+ if ((c = *++s) >= 'A' && c <= 'Z')
+ c += 'a' - 'A';
+ if (c != d)
+ return 0;
+ }
+ *sp = s + 1;
+ return 1;
+}
+
+static void
+gethex(double *rvp, const char **sp)
+{
+ unsigned int c, x[2];
+ const char * s;
+ int havedig, udx0, xshift;
+
+ x[0] = x[1] = 0;
+ havedig = xshift = 0;
+ udx0 = 1;
+ s = *sp;
+ while (c = *(const unsigned char * )++s) {
+ if (c >= '0' && c <= '9')
+ c -= '0';
+ else if (c >= 'a' && c <= 'f')
+ c += 10 - 'a';
+ else if (c >= 'A' && c <= 'F')
+ c += 10 - 'A';
+ else if (c <= ' ') {
+ if (udx0 && havedig) {
+ udx0 = 0;
+ xshift = 1;
+ }
+ continue;
+ } else if (/*(*/ c == ')') {
+ *sp = s + 1;
+ break;
+ } else
+ return; /* invalid form: don't change *sp */
+ havedig = 1;
+ if (xshift) {
+ xshift = 0;
+ x[0] = x[1];
+ x[1] = 0;
+ }
+ if (udx0)
+ x[0] = (x[0] << 4) | (x[1] >> 28);
+ x[1] = (x[1] << 4) | c;
+ }
+ if ((x[0] &= 0xfffff) || x[1]) {
+ fpword0(*rvp) = Exp_mask | x[0];
+ fpword1(*rvp) = x[1];
+ }
+}
+
+static int
+quorem(Bigint *b, Bigint *S)
+{
+ int n;
+ unsigned int * bx, *bxe, q, *sx, *sxe;
+ unsigned int borrow, carry, y, ys;
+ unsigned int si, z, zs;
+
+ n = S->wds;
+ if (b->wds < n)
+ return 0;
+ sx = S->x;
+ sxe = sx + --n;
+ bx = b->x;
+ bxe = bx + n;
+ q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
+ if (q) {
+ borrow = 0;
+ carry = 0;
+ do {
+ si = *sx++;
+ ys = (si & 0xffff) * q + carry;
+ zs = (si >> 16) * q + (ys >> 16);
+ carry = zs >> 16;
+ y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*bx >> 16) - (zs & 0xffff) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(bx, z, y);
+ } while (sx <= sxe);
+ if (!*bxe) {
+ bx = b->x;
+ while (--bxe > bx && !*bxe)
+ --n;
+ b->wds = n;
+ }
+ }
+ if (cmp(b, S) >= 0) {
+ q++;
+ borrow = 0;
+ carry = 0;
+ bx = b->x;
+ sx = S->x;
+ do {
+ si = *sx++;
+ ys = (si & 0xffff) + carry;
+ zs = (si >> 16) + (ys >> 16);
+ carry = zs >> 16;
+ y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+ borrow = (y & 0x10000) >> 16;
+ z = (*bx >> 16) - (zs & 0xffff) - borrow;
+ borrow = (z & 0x10000) >> 16;
+ Storeinc(bx, z, y);
+ } while (sx <= sxe);
+ bx = b->x;
+ bxe = bx + n;
+ if (!*bxe) {
+ while (--bxe > bx && !*bxe)
+ --n;
+ b->wds = n;
+ }
+ }
+ return q;
+}
+
+static char *
+rv_alloc(int i)
+{
+ int j, k, *r;
+
+ j = sizeof(unsigned int);
+ for (k = 0;
+ sizeof(Bigint) - sizeof(unsigned int) - sizeof(int) + j <= i;
+ j <<= 1)
+ k++;
+ r = (int * )Balloc(k);
+ *r = k;
+ return
+ (char *)(r + 1);
+}
+
+static char *
+nrv_alloc(char *s, char **rve, int n)
+{
+ char *rv, *t;
+
+ t = rv = rv_alloc(n);
+ while (*t = *s++)
+ t++;
+ if (rve)
+ *rve = t;
+ return rv;
+}
+
+/* freedtoa(s) must be used to free values s returned by dtoa
+ * when MULTIPLE_THREADS is #defined. It should be used in all cases,
+ * but for consistency with earlier versions of dtoa, it is optional
+ * when MULTIPLE_THREADS is not defined.
+ */
+
+void
+freedtoa(char *s)
+{
+ Bigint * b = (Bigint * )((int *)s - 1);
+ b->maxwds = 1 << (b->k = *(int * )b);
+ Bfree(b);
+}
+
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+ *
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
+ *
+ * Modifications:
+ * 1. Rather than iterating, we use a simple numeric overestimate
+ * to determine k = floor(log10(d)). We scale relevant
+ * quantities using O(log2(k)) rather than O(k) multiplications.
+ * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+ * try to generate digits strictly left to right. Instead, we
+ * compute with fewer bits and propagate the carry if necessary
+ * when rounding the final digit up. This is often faster.
+ * 3. Under the assumption that input will be rounded nearest,
+ * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+ * That is, we allow equality in stopping tests when the
+ * round-nearest rule will give the same floating-point value
+ * as would satisfaction of the stopping test with strict
+ * inequality.
+ * 4. We remove common factors of powers of 2 from relevant
+ * quantities.
+ * 5. When converting floating-point integers less than 1e16,
+ * we use floating-point arithmetic rather than resorting
+ * to multiple-precision integers.
+ * 6. When asked to produce fewer than 15 digits, we first try
+ * to get by with floating-point arithmetic; we resort to
+ * multiple-precision integer arithmetic only if we cannot
+ * guarantee that the floating-point calculation has given
+ * the correctly rounded result. For k requested digits and
+ * "uniformly" distributed input, the probability is
+ * something like 10^(k-15) that we must resort to the int
+ * calculation.
+ */
+
+char *
+dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve)
+{
+ /* Arguments ndigits, decpt, sign are similar to those
+ of ecvt and fcvt; trailing zeros are suppressed from
+ the returned string. If not null, *rve is set to point
+ to the end of the return value. If d is +-Infinity or NaN,
+ then *decpt is set to 9999.
+
+ mode:
+ 0 ==> shortest string that yields d when read in
+ and rounded to nearest.
+ 1 ==> like 0, but with Steele & White stopping rule;
+ e.g. with IEEE P754 arithmetic , mode 0 gives
+ 1e23 whereas mode 1 gives 9.999999999999999e22.
+ 2 ==> max(1,ndigits) significant digits. This gives a
+ return value similar to that of ecvt, except
+ that trailing zeros are suppressed.
+ 3 ==> through ndigits past the decimal point. This
+ gives a return value similar to that from fcvt,
+ except that trailing zeros are suppressed, and
+ ndigits can be negative.
+ 4-9 should give the same return values as 2-3, i.e.,
+ 4 <= mode <= 9 ==> same return as mode
+ 2 + (mode & 1). These modes are mainly for
+ debugging; often they run slower but sometimes
+ faster than modes 2-3.
+ 4,5,8,9 ==> left-to-right digit generation.
+ 6-9 ==> don't try fast floating-point estimate
+ (if applicable).
+
+ Values of mode other than 0-9 are treated as mode 0.
+
+ Sufficient space is allocated to the return value
+ to hold the suppressed trailing zeros.
+ */
+
+ int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
+ j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+ spec_case, try_quick;
+ int L;
+ Bigint * b, *b1, *delta, *mlo=nil, *mhi, *S;
+ double d2, ds, eps;
+ char *s, *s0;
+
+ if (fpword0(d) & Sign_bit) {
+ /* set sign for everything, including 0's and NaNs */
+ *sign = 1;
+ fpword0(d) &= ~Sign_bit; /* clear sign bit */
+ } else
+ *sign = 0;
+
+ if ((fpword0(d) & Exp_mask) == Exp_mask) {
+ /* Infinity or NaN */
+ *decpt = 9999;
+ if (!fpword1(d) && !(fpword0(d) & 0xfffff))
+ return nrv_alloc("Infinity", rve, 8);
+ return nrv_alloc("NaN", rve, 3);
+ }
+ if (!d) {
+ *decpt = 1;
+ return nrv_alloc("0", rve, 1);
+ }
+
+ b = d2b(d, &be, &bbits);
+ i = (int)(fpword0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));
+ d2 = d;
+ fpword0(d2) &= Frac_mask1;
+ fpword0(d2) |= Exp_11;
+
+ /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
+ * log10(x) = log(x) / log(10)
+ * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+ * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
+ *
+ * This suggests computing an approximation k to log10(d) by
+ *
+ * k = (i - Bias)*0.301029995663981
+ * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+ *
+ * We want k to be too large rather than too small.
+ * The error in the first-order Taylor series approximation
+ * is in our favor, so we just round up the constant enough
+ * to compensate for any error in the multiplication of
+ * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+ * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+ * adding 1e-13 to the constant term more than suffices.
+ * Hence we adjust the constant term to 0.1760912590558.
+ * (We could get a more accurate k by invoking log10,
+ * but this is probably not worthwhile.)
+ */
+
+ i -= Bias;
+ ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
+ k = (int)ds;
+ if (ds < 0. && ds != k)
+ k--; /* want k = floor(ds) */
+ k_check = 1;
+ if (k >= 0 && k <= Ten_pmax) {
+ if (d < tens[k])
+ k--;
+ k_check = 0;
+ }
+ j = bbits - i - 1;
+ if (j >= 0) {
+ b2 = 0;
+ s2 = j;
+ } else {
+ b2 = -j;
+ s2 = 0;
+ }
+ if (k >= 0) {
+ b5 = 0;
+ s5 = k;
+ s2 += k;
+ } else {
+ b2 -= k;
+ b5 = -k;
+ s5 = 0;
+ }
+ if (mode < 0 || mode > 9)
+ mode = 0;
+ try_quick = 1;
+ if (mode > 5) {
+ mode -= 4;
+ try_quick = 0;
+ }
+ leftright = 1;
+ switch (mode) {
+ case 0:
+ case 1:
+ ilim = ilim1 = -1;
+ i = 18;
+ ndigits = 0;
+ break;
+ case 2:
+ leftright = 0;
+ /* no break */
+ case 4:
+ if (ndigits <= 0)
+ ndigits = 1;
+ ilim = ilim1 = i = ndigits;
+ break;
+ case 3:
+ leftright = 0;
+ /* no break */
+ case 5:
+ i = ndigits + k + 1;
+ ilim = i;
+ ilim1 = i - 1;
+ if (i <= 0)
+ i = 1;
+ }
+ s = s0 = rv_alloc(i);
+
+ if (ilim >= 0 && ilim <= Quick_max && try_quick) {
+
+ /* Try to get by with floating-point arithmetic. */
+
+ i = 0;
+ d2 = d;
+ k0 = k;
+ ilim0 = ilim;
+ ieps = 2; /* conservative */
+ if (k > 0) {
+ ds = tens[k&0xf];
+ j = k >> 4;
+ if (j & Bletch) {
+ /* prevent overflows */
+ j &= Bletch - 1;
+ d /= bigtens[n_bigtens-1];
+ ieps++;
+ }
+ for (; j; j >>= 1, i++)
+ if (j & 1) {
+ ieps++;
+ ds *= bigtens[i];
+ }
+ d /= ds;
+ } else if (j1 = -k) {
+ d *= tens[j1 & 0xf];
+ for (j = j1 >> 4; j; j >>= 1, i++)
+ if (j & 1) {
+ ieps++;
+ d *= bigtens[i];
+ }
+ }
+ if (k_check && d < 1. && ilim > 0) {
+ if (ilim1 <= 0)
+ goto fast_failed;
+ ilim = ilim1;
+ k--;
+ d *= 10.;
+ ieps++;
+ }
+ eps = ieps * d + 7.;
+ fpword0(eps) -= (P - 1) * Exp_msk1;
+ if (ilim == 0) {
+ S = mhi = 0;
+ d -= 5.;
+ if (d > eps)
+ goto one_digit;
+ if (d < -eps)
+ goto no_digits;
+ goto fast_failed;
+ }
+ /* Generate ilim digits, then fix them up. */
+ eps *= tens[ilim-1];
+ for (i = 1; ; i++, d *= 10.) {
+ L = d;
+ d -= L;
+ *s++ = '0' + (int)L;
+ if (i == ilim) {
+ if (d > 0.5 + eps)
+ goto bump_up;
+ else if (d < 0.5 - eps) {
+ while (*--s == '0')
+ ;
+ s++;
+ goto ret1;
+ }
+ break;
+ }
+ }
+fast_failed:
+ s = s0;
+ d = d2;
+ k = k0;
+ ilim = ilim0;
+ }
+
+ /* Do we have a "small" integer? */
+
+ if (be >= 0 && k <= Int_max) {
+ /* Yes. */
+ ds = tens[k];
+ if (ndigits < 0 && ilim <= 0) {
+ S = mhi = 0;
+ if (ilim < 0 || d <= 5 * ds)
+ goto no_digits;
+ goto one_digit;
+ }
+ for (i = 1; ; i++) {
+ L = d / ds;
+ d -= L * ds;
+ *s++ = '0' + (int)L;
+ if (i == ilim) {
+ d += d;
+ if (d > ds || d == ds && L & 1) {
+bump_up:
+ while (*--s == '9')
+ if (s == s0) {
+ k++;
+ *s = '0';
+ break;
+ }
+ ++ * s++;
+ }
+ break;
+ }
+ if (!(d *= 10.))
+ break;
+ }
+ goto ret1;
+ }
+
+ m2 = b2;
+ m5 = b5;
+ mhi = mlo = 0;
+ if (leftright) {
+ if (mode < 2) {
+ i =
+ 1 + P - bbits;
+ } else {
+ j = ilim - 1;
+ if (m5 >= j)
+ m5 -= j;
+ else {
+ s5 += j -= m5;
+ b5 += j;
+ m5 = 0;
+ }
+ if ((i = ilim) < 0) {
+ m2 -= i;
+ i = 0;
+ }
+ }
+ b2 += i;
+ s2 += i;
+ mhi = i2b(1);
+ }
+ if (m2 > 0 && s2 > 0) {
+ i = m2 < s2 ? m2 : s2;
+ b2 -= i;
+ m2 -= i;
+ s2 -= i;
+ }
+ if (b5 > 0) {
+ if (leftright) {
+ if (m5 > 0) {
+ mhi = pow5mult(mhi, m5);
+ b1 = mult(mhi, b);
+ Bfree(b);
+ b = b1;
+ }
+ if (j = b5 - m5)
+ b = pow5mult(b, j);
+ } else
+ b = pow5mult(b, b5);
+ }
+ S = i2b(1);
+ if (s5 > 0)
+ S = pow5mult(S, s5);
+
+ /* Check for special case that d is a normalized power of 2. */
+
+ spec_case = 0;
+ if (mode < 2) {
+ if (!fpword1(d) && !(fpword0(d) & Bndry_mask)
+ ) {
+ /* The special case */
+ b2 += Log2P;
+ s2 += Log2P;
+ spec_case = 1;
+ }
+ }
+
+ /* Arrange for convenient computation of quotients:
+ * shift left if necessary so divisor has 4 leading 0 bits.
+ *
+ * Perhaps we should just compute leading 28 bits of S once
+ * and for all and pass them and a shift to quorem, so it
+ * can do shifts and ors to compute the numerator for q.
+ */
+ if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)
+ i = 32 - i;
+ if (i > 4) {
+ i -= 4;
+ b2 += i;
+ m2 += i;
+ s2 += i;
+ } else if (i < 4) {
+ i += 28;
+ b2 += i;
+ m2 += i;
+ s2 += i;
+ }
+ if (b2 > 0)
+ b = lshift(b, b2);
+ if (s2 > 0)
+ S = lshift(S, s2);
+ if (k_check) {
+ if (cmp(b, S) < 0) {
+ k--;
+ b = multadd(b, 10, 0); /* we botched the k estimate */
+ if (leftright)
+ mhi = multadd(mhi, 10, 0);
+ ilim = ilim1;
+ }
+ }
+ if (ilim <= 0 && mode > 2) {
+ if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) {
+ /* no digits, fcvt style */
+no_digits:
+ k = -1 - ndigits;
+ goto ret;
+ }
+one_digit:
+ *s++ = '1';
+ k++;
+ goto ret;
+ }
+ if (leftright) {
+ if (m2 > 0)
+ mhi = lshift(mhi, m2);
+
+ /* Compute mlo -- check for special case
+ * that d is a normalized power of 2.
+ */
+
+ mlo = mhi;
+ if (spec_case) {
+ mhi = Balloc(mhi->k);
+ Bcopy(mhi, mlo);
+ mhi = lshift(mhi, Log2P);
+ }
+
+ for (i = 1; ; i++) {
+ dig = quorem(b, S) + '0';
+ /* Do we yet have the shortest decimal string
+ * that will round to d?
+ */
+ j = cmp(b, mlo);
+ delta = diff(S, mhi);
+ j1 = delta->sign ? 1 : cmp(b, delta);
+ Bfree(delta);
+ if (j1 == 0 && !mode && !(fpword1(d) & 1)) {
+ if (dig == '9')
+ goto round_9_up;
+ if (j > 0)
+ dig++;
+ *s++ = dig;
+ goto ret;
+ }
+ if (j < 0 || j == 0 && !mode
+ && !(fpword1(d) & 1)
+ ) {
+ if (j1 > 0) {
+ b = lshift(b, 1);
+ j1 = cmp(b, S);
+ if ((j1 > 0 || j1 == 0 && dig & 1)
+ && dig++ == '9')
+ goto round_9_up;
+ }
+ *s++ = dig;
+ goto ret;
+ }
+ if (j1 > 0) {
+ if (dig == '9') { /* possible if i == 1 */
+round_9_up:
+ *s++ = '9';
+ goto roundoff;
+ }
+ *s++ = dig + 1;
+ goto ret;
+ }
+ *s++ = dig;
+ if (i == ilim)
+ break;
+ b = multadd(b, 10, 0);
+ if (mlo == mhi)
+ mlo = mhi = multadd(mhi, 10, 0);
+ else {
+ mlo = multadd(mlo, 10, 0);
+ mhi = multadd(mhi, 10, 0);
+ }
+ }
+ } else
+ for (i = 1; ; i++) {
+ *s++ = dig = quorem(b, S) + '0';
+ if (i >= ilim)
+ break;
+ b = multadd(b, 10, 0);
+ }
+
+ /* Round off last digit */
+
+ b = lshift(b, 1);
+ j = cmp(b, S);
+ if (j > 0 || j == 0 && dig & 1) {
+roundoff:
+ while (*--s == '9')
+ if (s == s0) {
+ k++;
+ *s++ = '1';
+ goto ret;
+ }
+ ++ * s++;
+ } else {
+ while (*--s == '0')
+ ;
+ s++;
+ }
+ret:
+ Bfree(S);
+ if (mhi) {
+ if (mlo && mlo != mhi)
+ Bfree(mlo);
+ Bfree(mhi);
+ }
+ret1:
+ Bfree(b);
+ *s = 0;
+ *decpt = k + 1;
+ if (rve)
+ *rve = s;
+ return s0;
+}
+