diff options
author | Taru Karttunen <taruti@taruti.net> | 2011-03-30 15:46:40 +0300 |
---|---|---|
committer | Taru Karttunen <taruti@taruti.net> | 2011-03-30 15:46:40 +0300 |
commit | e5888a1ffdae813d7575f5fb02275c6bb07e5199 (patch) | |
tree | d8d51eac403f07814b9e936eed0c9a79195e2450 /sys/src/libstdio/dtoa.c |
Import sources from 2011-03-30 iso image
Diffstat (limited to 'sys/src/libstdio/dtoa.c')
-rwxr-xr-x | sys/src/libstdio/dtoa.c | 1293 |
1 files changed, 1293 insertions, 0 deletions
diff --git a/sys/src/libstdio/dtoa.c b/sys/src/libstdio/dtoa.c new file mode 100755 index 000000000..26441ded7 --- /dev/null +++ b/sys/src/libstdio/dtoa.c @@ -0,0 +1,1293 @@ +/* derived from /netlib/fp/dtoa.c assuming IEEE, Standard C */ +/* kudos to dmg@bell-labs.com, gripes to ehg@bell-labs.com */ + +/* Let x be the exact mathematical number defined by a decimal + * string s. Then atof(s) is the round-nearest-even IEEE + * floating point value. + * Let y be an IEEE floating point value and let s be the string + * printed as %.17g. Then atof(s) is exactly y. + */ +#include <u.h> +#include <libc.h> + +static Lock _dtoalk[2]; +#define ACQUIRE_DTOA_LOCK(n) lock(&_dtoalk[n]) +#define FREE_DTOA_LOCK(n) unlock(&_dtoalk[n]) +#define PRIVATE_mem ((2000+sizeof(double)-1)/sizeof(double)) +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; +#define FLT_ROUNDS 1 +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#define FLT_RADIX 2 +#define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) +#define fpword0(x) ((FPdbleword*)&x)->hi +#define fpword1(x) ((FPdbleword*)&x)->lo +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Bias 1023 +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#define Avoid_Underflow + +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#define FFFFFFFF 0xffffffffUL + +#undef ULint + +#define Kmax 15 + +struct +Bigint { + struct Bigint *next; + int k, maxwds, sign, wds; + unsigned int x[1]; +}; + +typedef struct Bigint Bigint; + +static Bigint *freelist[Kmax+1]; + +static Bigint * +Balloc(int k) +{ + int x; + Bigint * rv; + unsigned int len; + + ACQUIRE_DTOA_LOCK(0); + if (rv = freelist[k]) { + freelist[k] = rv->next; + } else { + x = 1 << k; + len = (sizeof(Bigint) + (x - 1) * sizeof(unsigned int) + sizeof(double) -1) + / sizeof(double); + if (pmem_next - private_mem + len <= PRIVATE_mem) { + rv = (Bigint * )pmem_next; + pmem_next += len; + } else + rv = (Bigint * )malloc(len * sizeof(double)); + rv->k = k; + rv->maxwds = x; + } + FREE_DTOA_LOCK(0); + rv->sign = rv->wds = 0; + return rv; +} + +static void +Bfree(Bigint *v) +{ + if (v) { + ACQUIRE_DTOA_LOCK(0); + v->next = freelist[v->k]; + freelist[v->k] = v; + FREE_DTOA_LOCK(0); + } +} + +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ +y->wds*sizeof(int) + 2*sizeof(int)) + +static Bigint * +multadd(Bigint *b, int m, int a) /* multiply by m and add a */ +{ + int i, wds; + unsigned int carry, *x, y; + unsigned int xi, z; + Bigint * b1; + + wds = b->wds; + x = b->x; + i = 0; + carry = a; + do { + xi = *x; + y = (xi & 0xffff) * m + carry; + z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); + } while (++i < wds); + if (carry) { + if (wds >= b->maxwds) { + b1 = Balloc(b->k + 1); + Bcopy(b1, b); + Bfree(b); + b = b1; + } + b->x[wds++] = carry; + b->wds = wds; + } + return b; +} + +static Bigint * +s2b(const char *s, int nd0, int nd, unsigned int y9) +{ + Bigint * b; + int i, k; + int x, y; + + x = (nd + 8) / 9; + for (k = 0, y = 1; x > y; y <<= 1, k++) + ; + b = Balloc(k); + b->x[0] = y9; + b->wds = 1; + + i = 9; + if (9 < nd0) { + s += 9; + do + b = multadd(b, 10, *s++ - '0'); + while (++i < nd0); + s++; + } else + s += 10; + for (; i < nd; i++) + b = multadd(b, 10, *s++ - '0'); + return b; +} + +static int +hi0bits(register unsigned int x) +{ + register int k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; +} + +static int +lo0bits(unsigned int *y) +{ + register int k; + register unsigned int x = *y; + + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x & 1) + return 32; + } + *y = x; + return k; +} + +static Bigint * +i2b(int i) +{ + Bigint * b; + + b = Balloc(1); + b->x[0] = i; + b->wds = 1; + return b; +} + +static Bigint * +mult(Bigint *a, Bigint *b) +{ + Bigint * c; + int k, wa, wb, wc; + unsigned int * x, *xa, *xae, *xb, *xbe, *xc, *xc0; + unsigned int y; + unsigned int carry, z; + unsigned int z2; + + if (a->wds < b->wds) { + c = a; + a = b; + b = c; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) + k++; + c = Balloc(k); + for (x = c->x, xa = x + wc; x < xa; x++) + *x = 0; + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; + for (; xb < xbe; xb++, xc0++) { + if (y = *xb & 0xffff) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } while (x < xae); + *xc = carry; + } + if (y = *xb >> 16) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } while (x < xae); + *xc = z2; + } + } + for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) + ; + c->wds = wc; + return c; +} + +static Bigint *p5s; + +static Bigint * +pow5mult(Bigint *b, int k) +{ + Bigint * b1, *p5, *p51; + int i; + static int p05[3] = { + 5, 25, 125 }; + + if (i = k & 3) + b = multadd(b, p05[i-1], 0); + + if (!(k >>= 2)) + return b; + if (!(p5 = p5s)) { + /* first time */ + ACQUIRE_DTOA_LOCK(1); + if (!(p5 = p5s)) { + p5 = p5s = i2b(625); + p5->next = 0; + } + FREE_DTOA_LOCK(1); + } + for (; ; ) { + if (k & 1) { + b1 = mult(b, p5); + Bfree(b); + b = b1; + } + if (!(k >>= 1)) + break; + if (!(p51 = p5->next)) { + ACQUIRE_DTOA_LOCK(1); + if (!(p51 = p5->next)) { + p51 = p5->next = mult(p5, p5); + p51->next = 0; + } + FREE_DTOA_LOCK(1); + } + p5 = p51; + } + return b; +} + +static Bigint * +lshift(Bigint *b, int k) +{ + int i, k1, n, n1; + Bigint * b1; + unsigned int * x, *x1, *xe, z; + + n = k >> 5; + k1 = b->k; + n1 = n + b->wds + 1; + for (i = b->maxwds; n1 > i; i <<= 1) + k1++; + b1 = Balloc(k1); + x1 = b1->x; + for (i = 0; i < n; i++) + *x1++ = 0; + x = b->x; + xe = x + b->wds; + if (k &= 0x1f) { + k1 = 32 - k; + z = 0; + do { + *x1++ = *x << k | z; + z = *x++ >> k1; + } while (x < xe); + if (*x1 = z) + ++n1; + } else + do + *x1++ = *x++; + while (x < xe); + b1->wds = n1 - 1; + Bfree(b); + return b1; +} + +static int +cmp(Bigint *a, Bigint *b) +{ + unsigned int * xa, *xa0, *xb, *xb0; + int i, j; + + i = a->wds; + j = b->wds; + if (i -= j) + return i; + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for (; ; ) { + if (*--xa != *--xb) + return * xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; +} + +static Bigint * +diff(Bigint *a, Bigint *b) +{ + Bigint * c; + int i, wa, wb; + unsigned int * xa, *xae, *xb, *xbe, *xc; + unsigned int borrow, y; + unsigned int z; + + i = cmp(a, b); + if (!i) { + c = Balloc(0); + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + c = a; + a = b; + b = c; + i = 1; + } else + i = 0; + c = Balloc(a->k); + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; + do { + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } while (xb < xbe); + while (xa < xae) { + y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } + while (!*--xc) + wa--; + c->wds = wa; + return c; +} + +static double +ulp(double x) +{ + register int L; + double a; + + L = (fpword0(x) & Exp_mask) - (P - 1) * Exp_msk1; + fpword0(a) = L; + fpword1(a) = 0; + return a; +} + +static double +b2d(Bigint *a, int *e) +{ + unsigned int * xa, *xa0, w, y, z; + int k; + double d; +#define d0 fpword0(d) +#define d1 fpword1(d) + + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; + k = hi0bits(y); + *e = 32 - k; + if (k < Ebits) { + d0 = Exp_1 | y >> Ebits - k; + w = xa > xa0 ? *--xa : 0; + d1 = y << (32 - Ebits) + k | w >> Ebits - k; + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + d0 = Exp_1 | y << k | z >> 32 - k; + y = xa > xa0 ? *--xa : 0; + d1 = z << k | y >> 32 - k; + } else { + d0 = Exp_1 | y; + d1 = z; + } +ret_d: +#undef d0 +#undef d1 + return d; +} + +static Bigint * +d2b(double d, int *e, int *bits) +{ + Bigint * b; + int de, i, k; + unsigned int * x, y, z; +#define d0 fpword0(d) +#define d1 fpword1(d) + + b = Balloc(1); + x = b->x; + + z = d0 & Frac_mask; + d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ + de = (int)(d0 >> Exp_shift); + z |= Exp_msk11; + if (y = d1) { + if (k = lo0bits(&y)) { + x[0] = y | z << 32 - k; + z >>= k; + } else + x[0] = y; + i = b->wds = (x[1] = z) ? 2 : 1; + } else { + k = lo0bits(&z); + x[0] = z; + i = b->wds = 1; + k += 32; + } + *e = de - Bias - (P - 1) + k; + *bits = P - k; + return b; +} + +#undef d0 +#undef d1 + +static double +ratio(Bigint *a, Bigint *b) +{ + double da, db; + int k, ka, kb; + + da = b2d(a, &ka); + db = b2d(b, &kb); + k = ka - kb + 32 * (a->wds - b->wds); + if (k > 0) + fpword0(da) += k * Exp_msk1; + else { + k = -k; + fpword0(db) += k * Exp_msk1; + } + return da / db; +} + +static const double +tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +}; + +static const double +bigtens[] = { + 1e16, 1e32, 1e64, 1e128, 1e256 }; + +static const double tinytens[] = { + 1e-16, 1e-32, 1e-64, 1e-128, + 9007199254740992.e-256 +}; + +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 +#define n_bigtens 5 + +#define NAN_WORD0 0x7ff80000 + +#define NAN_WORD1 0 + +static int +match(const char **sp, char *t) +{ + int c, d; + const char * s = *sp; + + while (d = *t++) { + if ((c = *++s) >= 'A' && c <= 'Z') + c += 'a' - 'A'; + if (c != d) + return 0; + } + *sp = s + 1; + return 1; +} + +static void +gethex(double *rvp, const char **sp) +{ + unsigned int c, x[2]; + const char * s; + int havedig, udx0, xshift; + + x[0] = x[1] = 0; + havedig = xshift = 0; + udx0 = 1; + s = *sp; + while (c = *(const unsigned char * )++s) { + if (c >= '0' && c <= '9') + c -= '0'; + else if (c >= 'a' && c <= 'f') + c += 10 - 'a'; + else if (c >= 'A' && c <= 'F') + c += 10 - 'A'; + else if (c <= ' ') { + if (udx0 && havedig) { + udx0 = 0; + xshift = 1; + } + continue; + } else if (/*(*/ c == ')') { + *sp = s + 1; + break; + } else + return; /* invalid form: don't change *sp */ + havedig = 1; + if (xshift) { + xshift = 0; + x[0] = x[1]; + x[1] = 0; + } + if (udx0) + x[0] = (x[0] << 4) | (x[1] >> 28); + x[1] = (x[1] << 4) | c; + } + if ((x[0] &= 0xfffff) || x[1]) { + fpword0(*rvp) = Exp_mask | x[0]; + fpword1(*rvp) = x[1]; + } +} + +static int +quorem(Bigint *b, Bigint *S) +{ + int n; + unsigned int * bx, *bxe, q, *sx, *sxe; + unsigned int borrow, carry, y, ys; + unsigned int si, z, zs; + + n = S->wds; + if (b->wds < n) + return 0; + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ + if (q) { + borrow = 0; + carry = 0; + do { + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); + } while (sx <= sxe); + if (!*bxe) { + bx = b->x; + while (--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); + } while (sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while (--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + return q; +} + +static char * +rv_alloc(int i) +{ + int j, k, *r; + + j = sizeof(unsigned int); + for (k = 0; + sizeof(Bigint) - sizeof(unsigned int) - sizeof(int) + j <= i; + j <<= 1) + k++; + r = (int * )Balloc(k); + *r = k; + return + (char *)(r + 1); +} + +static char * +nrv_alloc(char *s, char **rve, int n) +{ + char *rv, *t; + + t = rv = rv_alloc(n); + while (*t = *s++) + t++; + if (rve) + *rve = t; + return rv; +} + +/* freedtoa(s) must be used to free values s returned by dtoa + * when MULTIPLE_THREADS is #defined. It should be used in all cases, + * but for consistency with earlier versions of dtoa, it is optional + * when MULTIPLE_THREADS is not defined. + */ + +void +freedtoa(char *s) +{ + Bigint * b = (Bigint * )((int *)s - 1); + b->maxwds = 1 << (b->k = *(int * )b); + Bfree(b); +} + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the int + * calculation. + */ + +char * +dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve) +{ + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4-9 should give the same return values as 2-3, i.e., + 4 <= mode <= 9 ==> same return as mode + 2 + (mode & 1). These modes are mainly for + debugging; often they run slower but sometimes + faster than modes 2-3. + 4,5,8,9 ==> left-to-right digit generation. + 6-9 ==> don't try fast floating-point estimate + (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, + spec_case, try_quick; + int L; + Bigint * b, *b1, *delta, *mlo=nil, *mhi, *S; + double d2, ds, eps; + char *s, *s0; + + if (fpword0(d) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + fpword0(d) &= ~Sign_bit; /* clear sign bit */ + } else + *sign = 0; + + if ((fpword0(d) & Exp_mask) == Exp_mask) { + /* Infinity or NaN */ + *decpt = 9999; + if (!fpword1(d) && !(fpword0(d) & 0xfffff)) + return nrv_alloc("Infinity", rve, 8); + return nrv_alloc("NaN", rve, 3); + } + if (!d) { + *decpt = 1; + return nrv_alloc("0", rve, 1); + } + + b = d2b(d, &be, &bbits); + i = (int)(fpword0(d) >> Exp_shift1 & (Exp_mask >> Exp_shift1)); + d2 = d; + fpword0(d2) &= Frac_mask1; + fpword0(d2) |= Exp_11; + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; + ds = (d2 - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981; + k = (int)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (d < tens[k]) + k--; + k_check = 0; + } + j = bbits - i - 1; + if (j >= 0) { + b2 = 0; + s2 = j; + } else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } else { + b2 -= k; + b5 = -k; + s5 = 0; + } + if (mode < 0 || mode > 9) + mode = 0; + try_quick = 1; + if (mode > 5) { + mode -= 4; + try_quick = 0; + } + leftright = 1; + switch (mode) { + case 0: + case 1: + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + s = s0 = rv_alloc(i); + + if (ilim >= 0 && ilim <= Quick_max && try_quick) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + d2 = d; + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + d /= bigtens[n_bigtens-1]; + ieps++; + } + for (; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + d /= ds; + } else if (j1 = -k) { + d *= tens[j1 & 0xf]; + for (j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + d *= bigtens[i]; + } + } + if (k_check && d < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + d *= 10.; + ieps++; + } + eps = ieps * d + 7.; + fpword0(eps) -= (P - 1) * Exp_msk1; + if (ilim == 0) { + S = mhi = 0; + d -= 5.; + if (d > eps) + goto one_digit; + if (d < -eps) + goto no_digits; + goto fast_failed; + } + /* Generate ilim digits, then fix them up. */ + eps *= tens[ilim-1]; + for (i = 1; ; i++, d *= 10.) { + L = d; + d -= L; + *s++ = '0' + (int)L; + if (i == ilim) { + if (d > 0.5 + eps) + goto bump_up; + else if (d < 0.5 - eps) { + while (*--s == '0') + ; + s++; + goto ret1; + } + break; + } + } +fast_failed: + s = s0; + d = d2; + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || d <= 5 * ds) + goto no_digits; + goto one_digit; + } + for (i = 1; ; i++) { + L = d / ds; + d -= L * ds; + *s++ = '0' + (int)L; + if (i == ilim) { + d += d; + if (d > ds || d == ds && L & 1) { +bump_up: + while (*--s == '9') + if (s == s0) { + k++; + *s = '0'; + break; + } + ++ * s++; + } + break; + } + if (!(d *= 10.)) + break; + } + goto ret1; + } + + m2 = b2; + m5 = b5; + mhi = mlo = 0; + if (leftright) { + if (mode < 2) { + i = + 1 + P - bbits; + } else { + j = ilim - 1; + if (m5 >= j) + m5 -= j; + else { + s5 += j -= m5; + b5 += j; + m5 = 0; + } + if ((i = ilim) < 0) { + m2 -= i; + i = 0; + } + } + b2 += i; + s2 += i; + mhi = i2b(1); + } + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5); + b1 = mult(mhi, b); + Bfree(b); + b = b1; + } + if (j = b5 - m5) + b = pow5mult(b, j); + } else + b = pow5mult(b, b5); + } + S = i2b(1); + if (s5 > 0) + S = pow5mult(S, s5); + + /* Check for special case that d is a normalized power of 2. */ + + spec_case = 0; + if (mode < 2) { + if (!fpword1(d) && !(fpword0(d) & Bndry_mask) + ) { + /* The special case */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) + i = 32 - i; + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + if (b2 > 0) + b = lshift(b, b2); + if (s2 > 0) + S = lshift(S, s2); + if (k_check) { + if (cmp(b, S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (leftright) + mhi = multadd(mhi, 10, 0); + ilim = ilim1; + } + } + if (ilim <= 0 && mode > 2) { + if (ilim < 0 || cmp(b, S = multadd(S, 5, 0)) <= 0) { + /* no digits, fcvt style */ +no_digits: + k = -1 - ndigits; + goto ret; + } +one_digit: + *s++ = '1'; + k++; + goto ret; + } + if (leftright) { + if (m2 > 0) + mhi = lshift(mhi, m2); + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k); + Bcopy(mhi, mlo); + mhi = lshift(mhi, Log2P); + } + + for (i = 1; ; i++) { + dig = quorem(b, S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + delta = diff(S, mhi); + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); + if (j1 == 0 && !mode && !(fpword1(d) & 1)) { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; + *s++ = dig; + goto ret; + } + if (j < 0 || j == 0 && !mode + && !(fpword1(d) & 1) + ) { + if (j1 > 0) { + b = lshift(b, 1); + j1 = cmp(b, S); + if ((j1 > 0 || j1 == 0 && dig & 1) + && dig++ == '9') + goto round_9_up; + } + *s++ = dig; + goto ret; + } + if (j1 > 0) { + if (dig == '9') { /* possible if i == 1 */ +round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = dig + 1; + goto ret; + } + *s++ = dig; + if (i == ilim) + break; + b = multadd(b, 10, 0); + if (mlo == mhi) + mlo = mhi = multadd(mhi, 10, 0); + else { + mlo = multadd(mlo, 10, 0); + mhi = multadd(mhi, 10, 0); + } + } + } else + for (i = 1; ; i++) { + *s++ = dig = quorem(b, S) + '0'; + if (i >= ilim) + break; + b = multadd(b, 10, 0); + } + + /* Round off last digit */ + + b = lshift(b, 1); + j = cmp(b, S); + if (j > 0 || j == 0 && dig & 1) { +roundoff: + while (*--s == '9') + if (s == s0) { + k++; + *s++ = '1'; + goto ret; + } + ++ * s++; + } else { + while (*--s == '0') + ; + s++; + } +ret: + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } +ret1: + Bfree(b); + *s = 0; + *decpt = k + 1; + if (rve) + *rve = s; + return s0; +} + |