Age | Commit message (Collapse) | Author |
|
The len variable refers to the total length of a Block list
in ipoputX(), but we need to pass the size of the buffer
we pass instead, which can be less if there are multiple
blocks.
|
|
when forwarding packets (gating), unconditionally
check tcp-syn packets for the mss-size option and
reduce it to fit the mtu of the outgoing interface.
this is done by exporting a new tcpmssclamp() function
from ip/tcp.c that takes an ip packet and its buffer size
and the effective mtu of the interface and adjusts
the mss value of tcp syn options.
this function is now also used by devbridge, enforcing
a tcp mss below the tunnel mtu.
|
|
This adds a new route "t"-flag that enables network address translation,
replacing the source address (and local port) of a forwarded packet to
one of the outgoing interface.
The state for a translation is kept in a new Translation structure,
which contains two Iphash entries, so it can be inserted into the
per protocol 4-tuple hash table, requiering no extra lookups.
Translations have a low overhead (~200 bytes on amd64),
so we can have many of them. They get reused after 5 minutes
of inactivity or when the per protocol limit of 1000 entries
is reached (then the one with longest inactivity is reused).
The protocol needs to export a "forward" function that is responsible
for modifying the forwarded packet, and then handle translations in
its input function for iphash hits with Iphash.trans != 0.
This patch also fixes a few minor things found during development:
- Include the Iphash in the Conv structure, avoiding estra malloc
- Fix ttl exceeded check (ttl < 1 -> ttl <= 1)
- Router should not reply with ttl exceeded for multicast flows
- Extra checks for icmp advice to avoid protocol confusions.
|
|
Instead of having to do an arp hash table lookup for each
outgoing ip packet, forward the Routehint pointer to the
medium's bwrite() function and let it cache the arp entry
pointer.
This avoids route and arp hash table lookups for tcp, il
and connection oriented udp.
It also allows us to avoid multiple route and arp table
lookups for the retransmits once an arp/neighbour solicitation
response arrives.
|
|
ipiput4() and ipiput6() are called with the incoming interface rlocked
while ipoput4() and ipoput6() also rlock() the outgoing interface once
a route has been found. it is common that the incoming and outgoing
interfaces are the same recusive rlocking().
the deadlock happens when a reader holds the rlock for the incoming interface,
then ip/ipconfig tries to add a new address, trying to wlock the interface.
as there are still active readers on the ifc, ip/ipconfig process gets queued
on the inteface RWlock.
now the reader finds the outgoing route which has the same interface as the
incoming packet and tries to rlock the ifc again. but now theres a writer
queued, so we also go to sleep waiting four outselfs to release the lock.
the solution is to never wait for the outgoing interface rlock, but instead
use non-queueing canrlock() and if it cannot be acquired, discard the packet.
|
|
to prevent deadlock on media unbind (which is called with
the interface wlock()'ed), the medias reader processes
that unbind was waiting for used to discard packets when
the interface could not be rlocked.
this has the unfortunate side effect that when we change
addresses on a interface that packets are getting lost.
this is problematic for the processing of ipv6 router
advertisements when multiple RA's are getting received
in quick succession.
this change removes that packet dropping behaviour and
instead changes the unbind process to avoid the deadlock
by wunlock()ing the interface temporarily while waiting
for the reader processes to finish. the interface media
is also changed to the mullmedium before unlocking (see
the comment).
|
|
using ~IP_DF mask to select offset and "more fragments" bits
includes the evil bit 15. so instead define a constant IP_FO
for the fragment offset bits and use (IP_MF|IP_FO). that way
the evil bit gets ignored and doesnt cause any useless calls
to ipreassemble().
|
|
|
|
given that we now keep the block size consistent with the
ip packet size, the variable header part of the ip packet
is just: BLEN(bp) - fp->flen == fp->hlen.
fix bug in ip6reassemble() in the non-fragmented case:
reload ih after ip header was moved before writing ih->ploadlen.
use concatbloc() instead of pullupblock().
|
|
some protocols assume that Ip4hdr.length[] and Ip6hdr.ploadlen[]
are valid and not out of range within the block but this has
not been verified. also, the ipv4 and ipv6 headers can have variable
length options, which was not considered in the fragmentation and
reassembly code.
to make this sane, ipiput4() and ipiput6() now verify that everything
is in range and trims to block to the expected size before it does
any further processing. now blocklen() and Ip4hdr.length[] are conistent.
ipoput4() and ipoput6() are simpler now, as they can rely on
blocklen() only, not having a special routing case.
ip fragmentation reassembly has to consider that fragments could
arrive with different ip header options, so we store the header+option
size in new Ipfrag.hlen field.
unfraglen() has to make sure not to run past the buffer, and hadle
the case when it encounters multiple fragment headers.
|
|
router life time is in seconds, while max ra interval is
in milliseconds!
|
|
|
|
remove tentative check
|
|
address for icmpttlexceeded, cleanup
|
|
|
|
ipv4local() and ipv6local() now take remote address argument,
returning the closest local address to the source. this
implements the standartized source address selection rules
instead of just returning the first local v4 or v6 address.
the source address selection was broken for esp, rudp an udp,
blindly assuming ifc->lifc->local being a valid v4 address.
use ipv6local() instead.
the v6 routing code used to lookup source address route to
decide to drop the packet instead of checking the interface
on the destination route.
factor out the route hint from Conv and put it in Routehint
structure. avoiding stack bloat in v4 routing. implement the
same trick for v6 avoiding second route lookup in ipoput6.
fix memory leak in icmpv6 router solicitation handling.
remove old unfinished handling of multiple v6 routers. should
implement source specific routes instead.
avoid duplication, use common convipvers() function.
use isv4() instead of memcmp v4prefix.
|
|
|
|
in Dev.bwrite()
the convention for Dev.bwrite() is that it accepts a *single* block,
and not a block chain. so we never have concatblock here.
to keep stuff consistent, we also guarantee thet Medium.bwrite()
will get a *single* block passed as well, as the callers are
few in number.
|
|
other operating systems always set the "don't fragment" bit
in ther outgoing ipv4 packets causing us to unnecesarily
call ip4reassemble() looking for a fragment reassembly queue.
the change excludes the "don't fragment" bit from the test
so we now call ip4reassemble() only when the "more fragmens"
bit is set or a fragment offset other than zero is given.
this optimization was discovered from akaros.
|
|
|
|
|
|
|