Age | Commit message (Collapse) | Author |
|
The idea is that when we reboot, we zero out
memory written by processes that have the private
flag set (such as factotum and keyfs), and also
clear the secrmem pool, which contains TLS keys
and the state of the random number generator.
This is so the newly booted kernel or firmware
will not find these secret keys in memory.
|
|
|
|
|
|
de-bloat the proc structure by allocating notes
with on the heap instead of embedding them in
the proc structure.
This saves around 640 bytes per process.
|
|
Handlin notes is common for all architectures
except how the note has to be pushed on the user
stack.
This change adds a popnote() function that returns
only the note string or nil if the process should
not be notified (no notes or user notes hold off).
Popnote() also handles common errors like notify
during note handling or missing note handler and
will suicide the process in that case.
|
|
The kernel stack is now above the Proc structure,
so the explicit kstack pointer can be eliminated.
|
|
procs come from the dynamic pools, so we don't need
to remove the memory used by possible procs from the
total available.
|
|
Treallocate the small data structures around procs eagerly,
but use malloc to allocate the large proc data structures
when we need them, which allows us to scale to many more procs.
There are still many scalability bottlenecks, so we only crank
up the nproc limit by a little bit this time around, and crank
it up more as we optimize more.
|
|
|
|
|
|
This adds the new function pointer PCArch.clockinit(),
which is a timer dependent initialization routine.
It also takes over the job of guesscpuhz(). This way, the
architecture ident code can switch between different
timers (i8253, HPET and XEN timer).
|
|
Previously, mmurelease() was always called with
palloc spinlock held.
This is unneccesary for some mmurelease()
implementations as they wont release pages
to the palloc pool.
This change removes pagechainhead() and
pagechaindone() and replaces them with just
freepages() call, which aquires the palloc
lock internally as needed.
freepages() avoids holding the palloc lock
while walking the linked list of pages,
avoding some lock contention.
|
|
|
|
|
|
we might as well handle the per process cycle
counter in the portable part instead of duplicating the code
in every arch and have inconsistent implementations.
we now have a portable kenter() and kexit() function,
that is ment to be used in trap/syscall from user,
which updates the counters.
some kernels missed initializing Mach.cyclefreq.
|
|
|
|
|
|
This implements proper intrdisable() support for all
interrupt controllers.
For enable, (*arch->intrassign)(Vctl*) fills in the
Vctl.enable and Vctl.disable pointers with the
appropriate routines and returns the assigned
vector number.
Once the Vctl struct has been linked to its vector
chain, Vctl.enable(Vctl*, shared) gets called with a
flag if the vector has been already enabled (shared).
This order is important here as enabling the interrupt
on the controller before we have linked the chain can
cause spurious interrupts, expecially on mp system
where the interrupt can target a different cpu than
the caller of intrenable().
The intrdisable() case is the other way around.
We first disable the interrupt on the controller
and after that unlink the Vctl from the chain.
On a multiprocessor, the xfree() of the Vctl struct
is delayed to avoid freeing it while it is still
in use by another cpu.
The xen port now also uses pc/irq.c which has been
made generic enougth to handle xen's irq scheme.
Also, archgeneric is now a separate file to avoid
pulling in dependencies from the 8259 interrupt
controller code.
|
|
port/iomap.c
With some newer UEFI firmware, not all pci bars get
programmed and we have to assign them ourselfs.
This was already done for memory bars. This change
adds the same for i/o port space, by providing a
ioreservewin() function which can be used to allocate
port space within the parent pci-pci bridge window.
Also, the pci code now allocates the pci config
space i/o ports 0xCF8/0xCFC so userspace needs to
use devpnp to access pci config space now. (see
latest realemu change).
Also, this moves the ioalloc()/iofree() code out
of devarch into port/iomap.c as it can be shared
with the ppc mtx kernel.
|
|
need to strip the a.out header, just like with the pc
kernel.
|
|
|
|
replace machine specific userinit() by a portable
implemntation that uses kproc() to create the first
process. the initcode text is mapped using kmap(),
so there is no need for machine specific tmpmap()
functions.
initcode stack preparation should be done in init0()
where the stack is mapped and can be accessed directly.
replacing the machine specific userinit() allows some
big simplifications as sysrfork() and kproc() are now
the only callers of newproc() and we can avoid initializing
fields that we know are being initialized by these
callers.
rename autogenerated init.h and reboot.h headers.
the initcode[] and rebootcode[] blobs are now in *.i
files and hex generation was moved to portmkfile. the
machine specific mkfile only needs to specify how to
build rebootcode.out and initcode.out.
|
|
fault() now has an additional pc argument that is
used to detect fault on a non-executable segment.
that is, we check on read fault if the segment
has the SG_NOEXEC attribute and the program counter
is within faulting page.
|
|
add PTECACHED bits
a portable SG_NOEXEC segment attribute was added to allow
non-executable (physical) segments. which will set the
PTENOEXEC bits for putmmu().
in the future, this can be used to make non-executable
stack / bss segments.
the SG_DEVICE attribute was added to distinguish between
mmio regions and uncached memory. only matterns on arm64.
on arm, theres the issue that PTEUNCACHED would have
no bits set when using the hardware bit definitions.
this is the reason bcm, kw, teg2 and omap kernels use
arteficial PTE constants. on zynq, the XN bit was used
as a hack to give PTEUNCACHED a non-zero value and when
the bit is clear then cache attributes where added to
the pte.
to fix this, PTECACHED constant was added.
the portable mmu code in fault.c will now explicitely set
PTECACHED bits for cached memory and PTEUNCACHED for
uncached memory. that way the hardware bit definitions
can be used everywhere.
|
|
was only implemented by the pc kernel. does not
account pages used by the mount cache.
|
|
|
|
|
|
we allow devether to create ethernet cards on attach. this is useull
for virtual cards like the sink driver, so we can create a sink
by simply: bind -a '#l2:sink ea=112233445566' /net
the detach routine was never called, so remove it from the few drivers
that attempted to implement it.
|
|
|
|
the only architecture dependence of devether was enabling interrupts,
which is now done at the end of the driver's reset() function now.
the wifi stack and dummy ethersink also go to port/.
do the IRQ2->IRQ9 hack for pc kernels in intrenabale(), so not
every caller of intrenable() has to be aware of it.
|
|
specific fpu handling
introducing the PFPU structue which allows the machine specific
code some flexibility on how to handle the FPU process state.
for example, in the pc and pc64 kernel, the FPsave structure is
arround 512 bytes. with avx512, it could grow up to 2K. instead
of embedding that into the Proc strucutre, it is more effective
to allocate it on first use of the fpu, as most processes do not
use simd or floating point in the first place. also, the FPsave
structure has special 16 byte alignment constraint, which further
favours dynamic allocation.
this gets rid of the memmoves in pc/pc64 kernels for the aligment.
there is also devproc, which is now checking if the fpsave area
is actually valid before reading it, avoiding debuggers to see
garbage data.
the Notsave structure is gone now, as it was not used on any
machine.
|
|
|
|
|
|
|
|
cpus on pc64
|
|
introduce cpushutdown() function that does the common
operation of initiating shutdown, returning once all
cpu's got the message and are about to shutdown. this
avoids duplicated code which isnt really machine specific.
automatic reboot on panic only when *debug= is not set
and the machine is a cpu server or has no display,
otherwise just hang.
|
|
|
|
we keep the details about palloc in page.c, providing pagechaindone()
for mmu code to be called after a series of pagechainhead() calls.
|
|
there are no kernels currently that do page coloring,
so the only use of cachectl[] is flushing the icache
(on arm and ppc).
on pc64, cachectl consumes 32 bytes in each page resulting
in over 200 megabytes of overhead for 32gb of ram with 4K
pages.
this change removes cachectl[] and adds txtflush ulong
that is set to ~0 by pio() to instruct putmmu() to flush
the icache.
|
|
intrdisable() will always be able to unregister the interrupt
now, so there is no reason to have it return an error value.
all drivers except uart8250 already assumed it to never fail
and theres no need to maintain that complexity.
|
|
|
|
|
|
memory size calculation
|
|
|
|
|
|
there is no use for "bootdisk" variable parametrization
of /boot/boot and no point for the boot section with its
boot methods in the kernel configuration anymore. so
mkboot and boot$CONF.out are gone.
move the rules for bootfs.paq creation in 9/boot/bootmkfile.
location of bootfs.proto is now in 9/boot/bootfs.proto.
our /boot/boot target is now just "boot".
|
|
|
|
procctl() is always called with up and it would not
work correctly if passed a different process, so
remove the Proc* argument and use up directly.
|
|
framebuffer will be added later.
|
|
|