1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "arm.h"
#define FEXT(d, o, w) (((d)>>(o)) & ((1<<(w))-1))
#define L1X(va) FEXT((va), 20, 12)
#define L2X(va) FEXT((va), 12, 8)
enum {
L1lo = UZERO/MiB, /* L1X(UZERO)? */
L1hi = (USTKTOP+MiB-1)/MiB, /* L1X(USTKTOP+MiB-1)? */
};
void
mmuinit(void)
{
PTE *l1, *l2;
uintptr pa, va;
l1 = (PTE*)PADDR(L1);
l2 = (PTE*)PADDR(L2);
/*
* map all of ram at KZERO
*/
va = KZERO;
for(pa = PHYSDRAM; pa < PHYSDRAM+DRAMSIZE; pa += MiB){
l1[L1X(va)] = pa|Dom0|L1AP(Krw)|Section|Cached|Buffered;
va += MiB;
}
/*
* identity map first MB of ram so mmu can be enabled
*/
l1[L1X(PHYSDRAM)] = PHYSDRAM|Dom0|L1AP(Krw)|Section|Cached|Buffered;
/*
* map i/o registers
*/
va = VIRTIO;
for(pa = PHYSIO; pa < PHYSIO+IOSIZE; pa += MiB){
l1[L1X(va)] = pa|Dom0|L1AP(Krw)|Section;
va += MiB;
}
/*
* double map exception vectors at top of virtual memory
*/
va = HVECTORS;
l1[L1X(va)] = (uintptr)l2|Dom0|Coarse;
l2[L2X(va)] = PHYSDRAM|L2AP(Krw)|Small;
}
void
mmuinit1(void)
{
PTE *l1;
l1 = (PTE*)L1;
m->mmul1 = l1;
/*
* undo identity map of first MB of ram
*/
l1[L1X(PHYSDRAM)] = 0;
cachedwbse(&l1[L1X(PHYSDRAM)], sizeof(PTE));
mmuinvalidate();
}
static void
mmul2empty(Proc* proc, int clear)
{
PTE *l1;
Page **l2, *page;
l1 = m->mmul1;
l2 = &proc->mmul2;
for(page = *l2; page != nil; page = page->next){
if(clear)
memset(UINT2PTR(page->va), 0, BY2PG);
l1[page->daddr] = Fault;
l2 = &page->next;
}
*l2 = proc->mmul2cache;
proc->mmul2cache = proc->mmul2;
proc->mmul2 = nil;
}
static void
mmul1empty(void)
{
#ifdef notdef
/* there's a bug in here */
PTE *l1;
/* clean out any user mappings still in l1 */
if(m->mmul1lo > L1lo){
if(m->mmul1lo == 1)
m->mmul1[L1lo] = Fault;
else
memset(&m->mmul1[L1lo], 0, m->mmul1lo*sizeof(PTE));
m->mmul1lo = L1lo;
}
if(m->mmul1hi < L1hi){
l1 = &m->mmul1[m->mmul1hi];
if((L1hi - m->mmul1hi) == 1)
*l1 = Fault;
else
memset(l1, 0, (L1hi - m->mmul1hi)*sizeof(PTE));
m->mmul1hi = L1hi;
}
#else
memset(&m->mmul1[L1lo], 0, (L1hi - L1lo)*sizeof(PTE));
#endif /* notdef */
}
void
mmuswitch(Proc* proc)
{
int x;
PTE *l1;
Page *page;
/* do kprocs get here and if so, do they need to? */
if(m->mmupid == proc->pid && !proc->newtlb)
return;
m->mmupid = proc->pid;
/* write back dirty and invalidate l1 caches */
cacheuwbinv();
if(proc->newtlb){
mmul2empty(proc, 1);
proc->newtlb = 0;
}
mmul1empty();
/* move in new map */
l1 = m->mmul1;
for(page = proc->mmul2; page != nil; page = page->next){
x = page->daddr;
l1[x] = PPN(page->pa)|Dom0|Coarse;
/* know here that L1lo < x < L1hi */
if(x+1 - m->mmul1lo < m->mmul1hi - x)
m->mmul1lo = x+1;
else
m->mmul1hi = x;
}
/* make sure map is in memory */
/* could be smarter about how much? */
cachedwbse(&l1[L1X(UZERO)], (L1hi - L1lo)*sizeof(PTE));
/* lose any possible stale tlb entries */
mmuinvalidate();
}
void
flushmmu(void)
{
int s;
s = splhi();
up->newtlb = 1;
mmuswitch(up);
splx(s);
}
void
mmurelease(Proc* proc)
{
Page *page, *next;
/* write back dirty and invalidate l1 caches */
cacheuwbinv();
mmul2empty(proc, 0);
for(page = proc->mmul2cache; page != nil; page = next){
next = page->next;
if(--page->ref)
panic("mmurelease: page->ref %lud", page->ref);
pagechainhead(page);
}
if(proc->mmul2cache != nil)
pagechaindone();
proc->mmul2cache = nil;
mmul1empty();
/* make sure map is in memory */
/* could be smarter about how much? */
cachedwbse(&m->mmul1[L1X(UZERO)], (L1hi - L1lo)*sizeof(PTE));
/* lose any possible stale tlb entries */
mmuinvalidate();
}
void
putmmu(uintptr va, uintptr pa, Page* page)
{
int x;
Page *pg;
PTE *l1, *pte;
x = L1X(va);
l1 = &m->mmul1[x];
if(*l1 == Fault){
/* wasteful - l2 pages only have 256 entries - fix */
if(up->mmul2cache == nil){
/* auxpg since we don't need much? memset if so */
pg = newpage(1, 0, 0);
pg->va = VA(kmap(pg));
}
else{
pg = up->mmul2cache;
up->mmul2cache = pg->next;
memset(UINT2PTR(pg->va), 0, BY2PG);
}
pg->daddr = x;
pg->next = up->mmul2;
up->mmul2 = pg;
/* force l2 page to memory */
cachedwbse((void *)pg->va, BY2PG);
*l1 = PPN(pg->pa)|Dom0|Coarse;
cachedwbse(l1, sizeof *l1);
if(x >= m->mmul1lo && x < m->mmul1hi){
if(x+1 - m->mmul1lo < m->mmul1hi - x)
m->mmul1lo = x+1;
else
m->mmul1hi = x;
}
}
pte = UINT2PTR(KADDR(PPN(*l1)));
/* protection bits are
* PTERONLY|PTEVALID;
* PTEWRITE|PTEVALID;
* PTEWRITE|PTEUNCACHED|PTEVALID;
*/
x = Small;
if(!(pa & PTEUNCACHED))
x |= Cached|Buffered;
if(pa & PTEWRITE)
x |= L2AP(Urw);
else
x |= L2AP(Uro);
pte[L2X(va)] = PPN(pa)|x;
cachedwbse(&pte[L2X(va)], sizeof pte[0]);
/* clear out the current entry */
mmuinvalidateaddr(PPN(va));
/* write back dirty entries - we need this because the pio() in
* fault.c is writing via a different virt addr and won't clean
* its changes out of the dcache. Page coloring doesn't work
* on this mmu because the virtual cache is set associative
* rather than direct mapped.
*/
cachedwbinv();
if(page->txtflush){
cacheiinv();
page->txtflush = 0;
}
checkmmu(va, PPN(pa));
}
/*
* Return the number of bytes that can be accessed via KADDR(pa).
* If pa is not a valid argument to KADDR, return 0.
*/
uintptr
cankaddr(uintptr pa)
{
if(pa < PHYSDRAM + memsize) /* assumes PHYSDRAM is 0 */
return PHYSDRAM + memsize - pa;
return 0;
}
uintptr
mmukmap(uintptr va, uintptr pa, usize size)
{
int o;
usize n;
PTE *pte, *pte0;
assert((va & (MiB-1)) == 0);
o = pa & (MiB-1);
pa -= o;
size += o;
pte = pte0 = &m->mmul1[L1X(va)];
for(n = 0; n < size; n += MiB)
if(*pte++ != Fault)
return 0;
pte = pte0;
for(n = 0; n < size; n += MiB){
*pte++ = (pa+n)|Dom0|L1AP(Krw)|Section;
mmuinvalidateaddr(va+n);
}
cachedwbse(pte0, (uintptr)pte - (uintptr)pte0);
return va + o;
}
void
checkmmu(uintptr va, uintptr pa)
{
USED(va);
USED(pa);
}
|