1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
#include "u.h"
#include "../port/lib.h"
#include "mem.h"
#include "dat.h"
#include "fns.h"
#include "io.h"
/*
* We have one page table per processor.
*
* Different processes are distinguished via the VSID field in
* the segment registers. As flushing the entire page table is an
* expensive operation, we implement an aging algorithm for
* mmu pids, with a background kproc to purge stale pids en mass.
*
* This needs modifications to run on a multiprocessor.
*/
static ulong ptabsize; /* number of bytes in page table */
static ulong ptabmask; /* hash mask */
/*
* VSID is 24 bits. 3 are required to distinguish segments in user
* space (kernel space only uses the BATs). pid 0 is reserved.
* The top 2 bits of the pid are used as a `color' for the background
* pid reclaimation algorithm.
*/
enum {
PIDBASE = 1,
PIDBITS = 21,
COLBITS = 2,
PIDMAX = ((1<<PIDBITS)-1),
COLMASK = ((1<<COLBITS)-1),
};
#define VSID(pid, i) (((pid)<<3)|i)
#define PIDCOLOR(pid) ((pid)>>(PIDBITS-COLBITS))
#define PTECOL(color) PTE0(1, VSID(((color)<<(PIDBITS-COLBITS)), 0), 0, 0)
void
mmuinit(void)
{
int lhash, mem;
extern ulong memsize; /* passed in from ROM monitor */
if(ptabsize == 0) {
/* heuristically size the hash table */
lhash = 10;
mem = (1<<23);
while(mem < memsize) {
lhash++;
mem <<= 1;
}
ptabsize = (1<<(lhash+6));
ptabmask = (1<<lhash)-1;
}
m->ptabbase = (ulong)xspanalloc(ptabsize, 0, ptabsize);
putsdr1(PADDR(m->ptabbase) | (ptabmask>>10));
m->mmupid = PIDBASE;
m->sweepcolor = 0;
m->trigcolor = COLMASK;
}
static int
work(void*)
{
return PIDCOLOR(m->mmupid) == m->trigcolor;
}
void
mmusweep(void*)
{
Proc *p;
int i, x, sweepcolor;
ulong *ptab, *ptabend, ptecol;
while(waserror())
;
for(;;) {
if(PIDCOLOR(m->mmupid) != m->trigcolor)
sleep(&m->sweepr, work, nil);
sweepcolor = m->sweepcolor;
x = splhi();
p = proctab(0);
for(i = 0; i < conf.nproc; i++, p++)
if(PIDCOLOR(p->mmupid) == sweepcolor)
p->mmupid = 0;
splx(x);
ptab = (ulong*)m->ptabbase;
ptabend = (ulong*)(m->ptabbase+ptabsize);
ptecol = PTECOL(sweepcolor);
while(ptab < ptabend) {
if((*ptab & PTECOL(3)) == ptecol)
*ptab = 0;
ptab += 2;
}
tlbflushall();
m->sweepcolor = (sweepcolor+1) & COLMASK;
m->trigcolor = (m->trigcolor+1) & COLMASK;
}
}
int
newmmupid(void)
{
int pid, newcolor;
pid = m->mmupid++;
if(m->mmupid > PIDMAX)
m->mmupid = PIDBASE;
newcolor = PIDCOLOR(m->mmupid);
if(newcolor != PIDCOLOR(pid)) {
if(newcolor == m->sweepcolor) {
/* desperation time. can't block here. punt to fault/putmmu */
print("newmmupid: %uld: no free mmu pids\n", up->pid);
if(m->mmupid == PIDBASE)
m->mmupid = PIDMAX;
else
m->mmupid--;
pid = 0;
}
else if(newcolor == m->trigcolor)
wakeup(&m->sweepr);
}
up->mmupid = pid;
return pid;
}
void
flushmmu(void)
{
int x;
x = splhi();
up->newtlb = 1;
mmuswitch(up);
splx(x);
}
/*
* called with splhi
*/
void
mmuswitch(Proc *p)
{
int i, mp;
if(p->kp) {
for(i = 0; i < 8; i++)
putsr(i<<28, 0);
return;
}
if(p->newtlb) {
p->mmupid = 0;
p->newtlb = 0;
}
mp = p->mmupid;
if(mp == 0)
mp = newmmupid();
for(i = 0; i < 8; i++)
putsr(i<<28, VSID(mp, i)|BIT(1)|BIT(2));
}
void
mmurelease(Proc* p)
{
p->mmupid = 0;
}
void
putmmu(ulong va, ulong pa, Page *pg)
{
int mp;
char *ctl;
ulong *p, *ep, *q, pteg;
ulong vsid, ptehi, x, hash;
/*
* If mmupid is 0, mmuswitch/newmmupid was unable to assign us
* a pid, hence we faulted. Keep calling sched() until the mmusweep
* proc catches up, and we are able to get a pid.
*/
while((mp = up->mmupid) == 0)
sched();
vsid = VSID(mp, va>>28);
hash = (vsid ^ (va>>12)&0xffff) & ptabmask;
ptehi = PTE0(1, vsid, 0, va);
pteg = m->ptabbase + BY2PTEG*hash;
p = (ulong*)pteg;
ep = (ulong*)(pteg+BY2PTEG);
q = nil;
tlbflush(va);
while(p < ep) {
x = p[0];
if(x == ptehi) {
q = p;
break;
}
if(q == nil && (x & BIT(0)) == 0)
q = p;
p += 2;
}
if(q == nil) {
q = (ulong*)(pteg+m->slotgen);
m->slotgen = (m->slotgen + BY2PTE) & (BY2PTEG-1);
}
q[0] = ptehi;
q[1] = pa;
sync();
ctl = &pg->cachectl[m->machno];
switch(*ctl) {
case PG_NEWCOL:
default:
panic("putmmu: %d\n", *ctl);
break;
case PG_NOFLUSH:
break;
case PG_TXTFLUSH:
dcflush((void*)pg->va, BY2PG);
icflush((void*)pg->va, BY2PG);
*ctl = PG_NOFLUSH;
break;
}
}
void
checkmmu(uintptr, uintptr)
{
}
void
countpagerefs(ulong*, int)
{
}
/*
* Return the number of bytes that can be accessed via KADDR(pa).
* If pa is not a valid argument to KADDR, return 0.
*/
ulong
cankaddr(ulong pa)
{
ulong kzero;
kzero = -KZERO;
if(pa >= kzero)
return 0;
return kzero - pa;
}
|