diff options
author | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
---|---|---|
committer | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
commit | a73a964e51247ed169d322c725a3a18859f109a3 (patch) | |
tree | 3f752d117274d444bda44e85609aeac1acf313f3 /sys/lib/python/csv.py | |
parent | e64efe273fcb921a61bf27d33b230c4e64fcd425 (diff) |
python, hg: tow outside the environment.
they've served us well, and can ride off into the sunset.
Diffstat (limited to 'sys/lib/python/csv.py')
-rw-r--r-- | sys/lib/python/csv.py | 415 |
1 files changed, 0 insertions, 415 deletions
diff --git a/sys/lib/python/csv.py b/sys/lib/python/csv.py deleted file mode 100644 index f21385478..000000000 --- a/sys/lib/python/csv.py +++ /dev/null @@ -1,415 +0,0 @@ - -""" -csv.py - read/write/investigate CSV files -""" - -import re -from _csv import Error, __version__, writer, reader, register_dialect, \ - unregister_dialect, get_dialect, list_dialects, \ - field_size_limit, \ - QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \ - __doc__ -from _csv import Dialect as _Dialect - -try: - from cStringIO import StringIO -except ImportError: - from StringIO import StringIO - -__all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE", - "Error", "Dialect", "excel", "excel_tab", "reader", "writer", - "register_dialect", "get_dialect", "list_dialects", "Sniffer", - "unregister_dialect", "__version__", "DictReader", "DictWriter" ] - -class Dialect: - """Describe an Excel dialect. - - This must be subclassed (see csv.excel). Valid attributes are: - delimiter, quotechar, escapechar, doublequote, skipinitialspace, - lineterminator, quoting. - - """ - _name = "" - _valid = False - # placeholders - delimiter = None - quotechar = None - escapechar = None - doublequote = None - skipinitialspace = None - lineterminator = None - quoting = None - - def __init__(self): - if self.__class__ != Dialect: - self._valid = True - self._validate() - - def _validate(self): - try: - _Dialect(self) - except TypeError, e: - # We do this for compatibility with py2.3 - raise Error(str(e)) - -class excel(Dialect): - """Describe the usual properties of Excel-generated CSV files.""" - delimiter = ',' - quotechar = '"' - doublequote = True - skipinitialspace = False - lineterminator = '\r\n' - quoting = QUOTE_MINIMAL -register_dialect("excel", excel) - -class excel_tab(excel): - """Describe the usual properties of Excel-generated TAB-delimited files.""" - delimiter = '\t' -register_dialect("excel-tab", excel_tab) - - -class DictReader: - def __init__(self, f, fieldnames=None, restkey=None, restval=None, - dialect="excel", *args, **kwds): - self.fieldnames = fieldnames # list of keys for the dict - self.restkey = restkey # key to catch long rows - self.restval = restval # default value for short rows - self.reader = reader(f, dialect, *args, **kwds) - - def __iter__(self): - return self - - def next(self): - row = self.reader.next() - if self.fieldnames is None: - self.fieldnames = row - row = self.reader.next() - - # unlike the basic reader, we prefer not to return blanks, - # because we will typically wind up with a dict full of None - # values - while row == []: - row = self.reader.next() - d = dict(zip(self.fieldnames, row)) - lf = len(self.fieldnames) - lr = len(row) - if lf < lr: - d[self.restkey] = row[lf:] - elif lf > lr: - for key in self.fieldnames[lr:]: - d[key] = self.restval - return d - - -class DictWriter: - def __init__(self, f, fieldnames, restval="", extrasaction="raise", - dialect="excel", *args, **kwds): - self.fieldnames = fieldnames # list of keys for the dict - self.restval = restval # for writing short dicts - if extrasaction.lower() not in ("raise", "ignore"): - raise ValueError, \ - ("extrasaction (%s) must be 'raise' or 'ignore'" % - extrasaction) - self.extrasaction = extrasaction - self.writer = writer(f, dialect, *args, **kwds) - - def _dict_to_list(self, rowdict): - if self.extrasaction == "raise": - for k in rowdict.keys(): - if k not in self.fieldnames: - raise ValueError, "dict contains fields not in fieldnames" - return [rowdict.get(key, self.restval) for key in self.fieldnames] - - def writerow(self, rowdict): - return self.writer.writerow(self._dict_to_list(rowdict)) - - def writerows(self, rowdicts): - rows = [] - for rowdict in rowdicts: - rows.append(self._dict_to_list(rowdict)) - return self.writer.writerows(rows) - -# Guard Sniffer's type checking against builds that exclude complex() -try: - complex -except NameError: - complex = float - -class Sniffer: - ''' - "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) - Returns a Dialect object. - ''' - def __init__(self): - # in case there is more than one possible delimiter - self.preferred = [',', '\t', ';', ' ', ':'] - - - def sniff(self, sample, delimiters=None): - """ - Returns a dialect (or None) corresponding to the sample - """ - - quotechar, delimiter, skipinitialspace = \ - self._guess_quote_and_delimiter(sample, delimiters) - if not delimiter: - delimiter, skipinitialspace = self._guess_delimiter(sample, - delimiters) - - if not delimiter: - raise Error, "Could not determine delimiter" - - class dialect(Dialect): - _name = "sniffed" - lineterminator = '\r\n' - quoting = QUOTE_MINIMAL - # escapechar = '' - doublequote = False - - dialect.delimiter = delimiter - # _csv.reader won't accept a quotechar of '' - dialect.quotechar = quotechar or '"' - dialect.skipinitialspace = skipinitialspace - - return dialect - - - def _guess_quote_and_delimiter(self, data, delimiters): - """ - Looks for text enclosed between two identical quotes - (the probable quotechar) which are preceded and followed - by the same character (the probable delimiter). - For example: - ,'some text', - The quote with the most wins, same with the delimiter. - If there is no quotechar the delimiter can't be determined - this way. - """ - - matches = [] - for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", - '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?", - '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?" - '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) - regexp = re.compile(restr, re.DOTALL | re.MULTILINE) - matches = regexp.findall(data) - if matches: - break - - if not matches: - return ('', None, 0) # (quotechar, delimiter, skipinitialspace) - - quotes = {} - delims = {} - spaces = 0 - for m in matches: - n = regexp.groupindex['quote'] - 1 - key = m[n] - if key: - quotes[key] = quotes.get(key, 0) + 1 - try: - n = regexp.groupindex['delim'] - 1 - key = m[n] - except KeyError: - continue - if key and (delimiters is None or key in delimiters): - delims[key] = delims.get(key, 0) + 1 - try: - n = regexp.groupindex['space'] - 1 - except KeyError: - continue - if m[n]: - spaces += 1 - - quotechar = reduce(lambda a, b, quotes = quotes: - (quotes[a] > quotes[b]) and a or b, quotes.keys()) - - if delims: - delim = reduce(lambda a, b, delims = delims: - (delims[a] > delims[b]) and a or b, delims.keys()) - skipinitialspace = delims[delim] == spaces - if delim == '\n': # most likely a file with a single column - delim = '' - else: - # there is *no* delimiter, it's a single column of quoted data - delim = '' - skipinitialspace = 0 - - return (quotechar, delim, skipinitialspace) - - - def _guess_delimiter(self, data, delimiters): - """ - The delimiter /should/ occur the same number of times on - each row. However, due to malformed data, it may not. We don't want - an all or nothing approach, so we allow for small variations in this - number. - 1) build a table of the frequency of each character on every line. - 2) build a table of freqencies of this frequency (meta-frequency?), - e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, - 7 times in 2 rows' - 3) use the mode of the meta-frequency to determine the /expected/ - frequency for that character - 4) find out how often the character actually meets that goal - 5) the character that best meets its goal is the delimiter - For performance reasons, the data is evaluated in chunks, so it can - try and evaluate the smallest portion of the data possible, evaluating - additional chunks as necessary. - """ - - data = filter(None, data.split('\n')) - - ascii = [chr(c) for c in range(127)] # 7-bit ASCII - - # build frequency tables - chunkLength = min(10, len(data)) - iteration = 0 - charFrequency = {} - modes = {} - delims = {} - start, end = 0, min(chunkLength, len(data)) - while start < len(data): - iteration += 1 - for line in data[start:end]: - for char in ascii: - metaFrequency = charFrequency.get(char, {}) - # must count even if frequency is 0 - freq = line.count(char) - # value is the mode - metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 - charFrequency[char] = metaFrequency - - for char in charFrequency.keys(): - items = charFrequency[char].items() - if len(items) == 1 and items[0][0] == 0: - continue - # get the mode of the frequencies - if len(items) > 1: - modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, - items) - # adjust the mode - subtract the sum of all - # other frequencies - items.remove(modes[char]) - modes[char] = (modes[char][0], modes[char][1] - - reduce(lambda a, b: (0, a[1] + b[1]), - items)[1]) - else: - modes[char] = items[0] - - # build a list of possible delimiters - modeList = modes.items() - total = float(chunkLength * iteration) - # (rows of consistent data) / (number of rows) = 100% - consistency = 1.0 - # minimum consistency threshold - threshold = 0.9 - while len(delims) == 0 and consistency >= threshold: - for k, v in modeList: - if v[0] > 0 and v[1] > 0: - if ((v[1]/total) >= consistency and - (delimiters is None or k in delimiters)): - delims[k] = v - consistency -= 0.01 - - if len(delims) == 1: - delim = delims.keys()[0] - skipinitialspace = (data[0].count(delim) == - data[0].count("%c " % delim)) - return (delim, skipinitialspace) - - # analyze another chunkLength lines - start = end - end += chunkLength - - if not delims: - return ('', 0) - - # if there's more than one, fall back to a 'preferred' list - if len(delims) > 1: - for d in self.preferred: - if d in delims.keys(): - skipinitialspace = (data[0].count(d) == - data[0].count("%c " % d)) - return (d, skipinitialspace) - - # nothing else indicates a preference, pick the character that - # dominates(?) - items = [(v,k) for (k,v) in delims.items()] - items.sort() - delim = items[-1][1] - - skipinitialspace = (data[0].count(delim) == - data[0].count("%c " % delim)) - return (delim, skipinitialspace) - - - def has_header(self, sample): - # Creates a dictionary of types of data in each column. If any - # column is of a single type (say, integers), *except* for the first - # row, then the first row is presumed to be labels. If the type - # can't be determined, it is assumed to be a string in which case - # the length of the string is the determining factor: if all of the - # rows except for the first are the same length, it's a header. - # Finally, a 'vote' is taken at the end for each column, adding or - # subtracting from the likelihood of the first row being a header. - - rdr = reader(StringIO(sample), self.sniff(sample)) - - header = rdr.next() # assume first row is header - - columns = len(header) - columnTypes = {} - for i in range(columns): columnTypes[i] = None - - checked = 0 - for row in rdr: - # arbitrary number of rows to check, to keep it sane - if checked > 20: - break - checked += 1 - - if len(row) != columns: - continue # skip rows that have irregular number of columns - - for col in columnTypes.keys(): - - for thisType in [int, long, float, complex]: - try: - thisType(row[col]) - break - except (ValueError, OverflowError): - pass - else: - # fallback to length of string - thisType = len(row[col]) - - # treat longs as ints - if thisType == long: - thisType = int - - if thisType != columnTypes[col]: - if columnTypes[col] is None: # add new column type - columnTypes[col] = thisType - else: - # type is inconsistent, remove column from - # consideration - del columnTypes[col] - - # finally, compare results against first row and "vote" - # on whether it's a header - hasHeader = 0 - for col, colType in columnTypes.items(): - if type(colType) == type(0): # it's a length - if len(header[col]) != colType: - hasHeader += 1 - else: - hasHeader -= 1 - else: # attempt typecast - try: - colType(header[col]) - except (ValueError, TypeError): - hasHeader += 1 - else: - hasHeader -= 1 - - return hasHeader > 0 |