summaryrefslogtreecommitdiff
path: root/sys/src/ape/lib/ap/math/j0.c
diff options
context:
space:
mode:
authorTaru Karttunen <taruti@taruti.net>2011-03-30 15:46:40 +0300
committerTaru Karttunen <taruti@taruti.net>2011-03-30 15:46:40 +0300
commite5888a1ffdae813d7575f5fb02275c6bb07e5199 (patch)
treed8d51eac403f07814b9e936eed0c9a79195e2450 /sys/src/ape/lib/ap/math/j0.c
Import sources from 2011-03-30 iso image
Diffstat (limited to 'sys/src/ape/lib/ap/math/j0.c')
-rwxr-xr-xsys/src/ape/lib/ap/math/j0.c188
1 files changed, 188 insertions, 0 deletions
diff --git a/sys/src/ape/lib/ap/math/j0.c b/sys/src/ape/lib/ap/math/j0.c
new file mode 100755
index 000000000..7dea3c9d1
--- /dev/null
+++ b/sys/src/ape/lib/ap/math/j0.c
@@ -0,0 +1,188 @@
+#include <math.h>
+#include <errno.h>
+/*
+ floating point Bessel's function
+ of the first and second kinds
+ of order zero
+
+ j0(x) returns the value of J0(x)
+ for all real values of x.
+
+ There are no error returns.
+ Calls sin, cos, sqrt.
+
+ There is a niggling bug in J0 which
+ causes errors up to 2e-16 for x in the
+ interval [-8,8].
+ The bug is caused by an inappropriate order
+ of summation of the series. rhm will fix it
+ someday.
+
+ Coefficients are from Hart & Cheney.
+ #5849 (19.22D)
+ #6549 (19.25D)
+ #6949 (19.41D)
+
+ y0(x) returns the value of Y0(x)
+ for positive real values of x.
+ For x<=0, error number EDOM is set and a
+ large negative value is returned.
+
+ Calls sin, cos, sqrt, log, j0.
+
+ The values of Y0 have not been checked
+ to more than ten places.
+
+ Coefficients are from Hart & Cheney.
+ #6245 (18.78D)
+ #6549 (19.25D)
+ #6949 (19.41D)
+*/
+
+static double pzero, qzero;
+static double tpi = .6366197723675813430755350535e0;
+static double pio4 = .7853981633974483096156608458e0;
+static double p1[] = {
+ 0.4933787251794133561816813446e21,
+ -.1179157629107610536038440800e21,
+ 0.6382059341072356562289432465e19,
+ -.1367620353088171386865416609e18,
+ 0.1434354939140344111664316553e16,
+ -.8085222034853793871199468171e13,
+ 0.2507158285536881945555156435e11,
+ -.4050412371833132706360663322e8,
+ 0.2685786856980014981415848441e5,
+};
+static double q1[] = {
+ 0.4933787251794133562113278438e21,
+ 0.5428918384092285160200195092e19,
+ 0.3024635616709462698627330784e17,
+ 0.1127756739679798507056031594e15,
+ 0.3123043114941213172572469442e12,
+ 0.6699987672982239671814028660e9,
+ 0.1114636098462985378182402543e7,
+ 0.1363063652328970604442810507e4,
+ 1.0
+};
+static double p2[] = {
+ 0.5393485083869438325262122897e7,
+ 0.1233238476817638145232406055e8,
+ 0.8413041456550439208464315611e7,
+ 0.2016135283049983642487182349e7,
+ 0.1539826532623911470917825993e6,
+ 0.2485271928957404011288128951e4,
+ 0.0,
+};
+static double q2[] = {
+ 0.5393485083869438325560444960e7,
+ 0.1233831022786324960844856182e8,
+ 0.8426449050629797331554404810e7,
+ 0.2025066801570134013891035236e7,
+ 0.1560017276940030940592769933e6,
+ 0.2615700736920839685159081813e4,
+ 1.0,
+};
+static double p3[] = {
+ -.3984617357595222463506790588e4,
+ -.1038141698748464093880530341e5,
+ -.8239066313485606568803548860e4,
+ -.2365956170779108192723612816e4,
+ -.2262630641933704113967255053e3,
+ -.4887199395841261531199129300e1,
+ 0.0,
+};
+static double q3[] = {
+ 0.2550155108860942382983170882e6,
+ 0.6667454239319826986004038103e6,
+ 0.5332913634216897168722255057e6,
+ 0.1560213206679291652539287109e6,
+ 0.1570489191515395519392882766e5,
+ 0.4087714673983499223402830260e3,
+ 1.0,
+};
+static double p4[] = {
+ -.2750286678629109583701933175e20,
+ 0.6587473275719554925999402049e20,
+ -.5247065581112764941297350814e19,
+ 0.1375624316399344078571335453e18,
+ -.1648605817185729473122082537e16,
+ 0.1025520859686394284509167421e14,
+ -.3436371222979040378171030138e11,
+ 0.5915213465686889654273830069e8,
+ -.4137035497933148554125235152e5,
+};
+static double q4[] = {
+ 0.3726458838986165881989980e21,
+ 0.4192417043410839973904769661e19,
+ 0.2392883043499781857439356652e17,
+ 0.9162038034075185262489147968e14,
+ 0.2613065755041081249568482092e12,
+ 0.5795122640700729537480087915e9,
+ 0.1001702641288906265666651753e7,
+ 0.1282452772478993804176329391e4,
+ 1.0,
+};
+
+static
+asympt(double arg)
+{
+ double zsq, n, d;
+ int i;
+
+ zsq = 64 / (arg*arg);
+ for(n=0,d=0,i=6;i>=0;i--) {
+ n = n*zsq + p2[i];
+ d = d*zsq + q2[i];
+ }
+ pzero = n/d;
+ for(n=0,d=0,i=6;i>=0;i--) {
+ n = n*zsq + p3[i];
+ d = d*zsq + q3[i];
+ }
+ qzero = (8/arg)*(n/d);
+}
+
+double
+j0(double arg)
+{
+ double argsq, n, d;
+ int i;
+
+ if(arg < 0)
+ arg = -arg;
+ if(arg > 8) {
+ asympt(arg);
+ n = arg - pio4;
+ return sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n));
+ }
+ argsq = arg*arg;
+ for(n=0,d=0,i=8;i>=0;i--) {
+ n = n*argsq + p1[i];
+ d = d*argsq + q1[i];
+ }
+ return n/d;
+}
+
+double
+y0(double arg)
+{
+ double argsq, n, d;
+ int i;
+
+ errno = 0;
+ if(arg <= 0) {
+ errno = EDOM;
+ return(-HUGE_VAL);
+ }
+ if(arg > 8) {
+ asympt(arg);
+ n = arg - pio4;
+ return sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n));
+ }
+ argsq = arg*arg;
+ for(n=0,d=0,i=8;i>=0;i--) {
+ n = n*argsq + p4[i];
+ d = d*argsq + q4[i];
+ }
+ return n/d + tpi*j0(arg)*log(arg);
+}