diff options
author | Taru Karttunen <taruti@taruti.net> | 2011-03-30 15:46:40 +0300 |
---|---|---|
committer | Taru Karttunen <taruti@taruti.net> | 2011-03-30 15:46:40 +0300 |
commit | e5888a1ffdae813d7575f5fb02275c6bb07e5199 (patch) | |
tree | d8d51eac403f07814b9e936eed0c9a79195e2450 /sys/src/ape/lib/ap/math/j0.c |
Import sources from 2011-03-30 iso image
Diffstat (limited to 'sys/src/ape/lib/ap/math/j0.c')
-rwxr-xr-x | sys/src/ape/lib/ap/math/j0.c | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/sys/src/ape/lib/ap/math/j0.c b/sys/src/ape/lib/ap/math/j0.c new file mode 100755 index 000000000..7dea3c9d1 --- /dev/null +++ b/sys/src/ape/lib/ap/math/j0.c @@ -0,0 +1,188 @@ +#include <math.h> +#include <errno.h> +/* + floating point Bessel's function + of the first and second kinds + of order zero + + j0(x) returns the value of J0(x) + for all real values of x. + + There are no error returns. + Calls sin, cos, sqrt. + + There is a niggling bug in J0 which + causes errors up to 2e-16 for x in the + interval [-8,8]. + The bug is caused by an inappropriate order + of summation of the series. rhm will fix it + someday. + + Coefficients are from Hart & Cheney. + #5849 (19.22D) + #6549 (19.25D) + #6949 (19.41D) + + y0(x) returns the value of Y0(x) + for positive real values of x. + For x<=0, error number EDOM is set and a + large negative value is returned. + + Calls sin, cos, sqrt, log, j0. + + The values of Y0 have not been checked + to more than ten places. + + Coefficients are from Hart & Cheney. + #6245 (18.78D) + #6549 (19.25D) + #6949 (19.41D) +*/ + +static double pzero, qzero; +static double tpi = .6366197723675813430755350535e0; +static double pio4 = .7853981633974483096156608458e0; +static double p1[] = { + 0.4933787251794133561816813446e21, + -.1179157629107610536038440800e21, + 0.6382059341072356562289432465e19, + -.1367620353088171386865416609e18, + 0.1434354939140344111664316553e16, + -.8085222034853793871199468171e13, + 0.2507158285536881945555156435e11, + -.4050412371833132706360663322e8, + 0.2685786856980014981415848441e5, +}; +static double q1[] = { + 0.4933787251794133562113278438e21, + 0.5428918384092285160200195092e19, + 0.3024635616709462698627330784e17, + 0.1127756739679798507056031594e15, + 0.3123043114941213172572469442e12, + 0.6699987672982239671814028660e9, + 0.1114636098462985378182402543e7, + 0.1363063652328970604442810507e4, + 1.0 +}; +static double p2[] = { + 0.5393485083869438325262122897e7, + 0.1233238476817638145232406055e8, + 0.8413041456550439208464315611e7, + 0.2016135283049983642487182349e7, + 0.1539826532623911470917825993e6, + 0.2485271928957404011288128951e4, + 0.0, +}; +static double q2[] = { + 0.5393485083869438325560444960e7, + 0.1233831022786324960844856182e8, + 0.8426449050629797331554404810e7, + 0.2025066801570134013891035236e7, + 0.1560017276940030940592769933e6, + 0.2615700736920839685159081813e4, + 1.0, +}; +static double p3[] = { + -.3984617357595222463506790588e4, + -.1038141698748464093880530341e5, + -.8239066313485606568803548860e4, + -.2365956170779108192723612816e4, + -.2262630641933704113967255053e3, + -.4887199395841261531199129300e1, + 0.0, +}; +static double q3[] = { + 0.2550155108860942382983170882e6, + 0.6667454239319826986004038103e6, + 0.5332913634216897168722255057e6, + 0.1560213206679291652539287109e6, + 0.1570489191515395519392882766e5, + 0.4087714673983499223402830260e3, + 1.0, +}; +static double p4[] = { + -.2750286678629109583701933175e20, + 0.6587473275719554925999402049e20, + -.5247065581112764941297350814e19, + 0.1375624316399344078571335453e18, + -.1648605817185729473122082537e16, + 0.1025520859686394284509167421e14, + -.3436371222979040378171030138e11, + 0.5915213465686889654273830069e8, + -.4137035497933148554125235152e5, +}; +static double q4[] = { + 0.3726458838986165881989980e21, + 0.4192417043410839973904769661e19, + 0.2392883043499781857439356652e17, + 0.9162038034075185262489147968e14, + 0.2613065755041081249568482092e12, + 0.5795122640700729537480087915e9, + 0.1001702641288906265666651753e7, + 0.1282452772478993804176329391e4, + 1.0, +}; + +static +asympt(double arg) +{ + double zsq, n, d; + int i; + + zsq = 64 / (arg*arg); + for(n=0,d=0,i=6;i>=0;i--) { + n = n*zsq + p2[i]; + d = d*zsq + q2[i]; + } + pzero = n/d; + for(n=0,d=0,i=6;i>=0;i--) { + n = n*zsq + p3[i]; + d = d*zsq + q3[i]; + } + qzero = (8/arg)*(n/d); +} + +double +j0(double arg) +{ + double argsq, n, d; + int i; + + if(arg < 0) + arg = -arg; + if(arg > 8) { + asympt(arg); + n = arg - pio4; + return sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n)); + } + argsq = arg*arg; + for(n=0,d=0,i=8;i>=0;i--) { + n = n*argsq + p1[i]; + d = d*argsq + q1[i]; + } + return n/d; +} + +double +y0(double arg) +{ + double argsq, n, d; + int i; + + errno = 0; + if(arg <= 0) { + errno = EDOM; + return(-HUGE_VAL); + } + if(arg > 8) { + asympt(arg); + n = arg - pio4; + return sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n)); + } + argsq = arg*arg; + for(n=0,d=0,i=8;i>=0;i--) { + n = n*argsq + p4[i]; + d = d*argsq + q4[i]; + } + return n/d + tpi*j0(arg)*log(arg); +} |