summaryrefslogtreecommitdiff
path: root/sys/src/cmd/python/Demo/classes/Rat.py
diff options
context:
space:
mode:
authorcinap_lenrek <cinap_lenrek@localhost>2011-05-03 11:25:13 +0000
committercinap_lenrek <cinap_lenrek@localhost>2011-05-03 11:25:13 +0000
commit458120dd40db6b4df55a4e96b650e16798ef06a0 (patch)
tree8f82685be24fef97e715c6f5ca4c68d34d5074ee /sys/src/cmd/python/Demo/classes/Rat.py
parent3a742c699f6806c1145aea5149bf15de15a0afd7 (diff)
add hg and python
Diffstat (limited to 'sys/src/cmd/python/Demo/classes/Rat.py')
-rwxr-xr-xsys/src/cmd/python/Demo/classes/Rat.py310
1 files changed, 310 insertions, 0 deletions
diff --git a/sys/src/cmd/python/Demo/classes/Rat.py b/sys/src/cmd/python/Demo/classes/Rat.py
new file mode 100755
index 000000000..55543b6d2
--- /dev/null
+++ b/sys/src/cmd/python/Demo/classes/Rat.py
@@ -0,0 +1,310 @@
+'''\
+This module implements rational numbers.
+
+The entry point of this module is the function
+ rat(numerator, denominator)
+If either numerator or denominator is of an integral or rational type,
+the result is a rational number, else, the result is the simplest of
+the types float and complex which can hold numerator/denominator.
+If denominator is omitted, it defaults to 1.
+Rational numbers can be used in calculations with any other numeric
+type. The result of the calculation will be rational if possible.
+
+There is also a test function with calling sequence
+ test()
+The documentation string of the test function contains the expected
+output.
+'''
+
+# Contributed by Sjoerd Mullender
+
+from types import *
+
+def gcd(a, b):
+ '''Calculate the Greatest Common Divisor.'''
+ while b:
+ a, b = b, a%b
+ return a
+
+def rat(num, den = 1):
+ # must check complex before float
+ if isinstance(num, complex) or isinstance(den, complex):
+ # numerator or denominator is complex: return a complex
+ return complex(num) / complex(den)
+ if isinstance(num, float) or isinstance(den, float):
+ # numerator or denominator is float: return a float
+ return float(num) / float(den)
+ # otherwise return a rational
+ return Rat(num, den)
+
+class Rat:
+ '''This class implements rational numbers.'''
+
+ def __init__(self, num, den = 1):
+ if den == 0:
+ raise ZeroDivisionError, 'rat(x, 0)'
+
+ # normalize
+
+ # must check complex before float
+ if (isinstance(num, complex) or
+ isinstance(den, complex)):
+ # numerator or denominator is complex:
+ # normalized form has denominator == 1+0j
+ self.__num = complex(num) / complex(den)
+ self.__den = complex(1)
+ return
+ if isinstance(num, float) or isinstance(den, float):
+ # numerator or denominator is float:
+ # normalized form has denominator == 1.0
+ self.__num = float(num) / float(den)
+ self.__den = 1.0
+ return
+ if (isinstance(num, self.__class__) or
+ isinstance(den, self.__class__)):
+ # numerator or denominator is rational
+ new = num / den
+ if not isinstance(new, self.__class__):
+ self.__num = new
+ if isinstance(new, complex):
+ self.__den = complex(1)
+ else:
+ self.__den = 1.0
+ else:
+ self.__num = new.__num
+ self.__den = new.__den
+ else:
+ # make sure numerator and denominator don't
+ # have common factors
+ # this also makes sure that denominator > 0
+ g = gcd(num, den)
+ self.__num = num / g
+ self.__den = den / g
+ # try making numerator and denominator of IntType if they fit
+ try:
+ numi = int(self.__num)
+ deni = int(self.__den)
+ except (OverflowError, TypeError):
+ pass
+ else:
+ if self.__num == numi and self.__den == deni:
+ self.__num = numi
+ self.__den = deni
+
+ def __repr__(self):
+ return 'Rat(%s,%s)' % (self.__num, self.__den)
+
+ def __str__(self):
+ if self.__den == 1:
+ return str(self.__num)
+ else:
+ return '(%s/%s)' % (str(self.__num), str(self.__den))
+
+ # a + b
+ def __add__(a, b):
+ try:
+ return rat(a.__num * b.__den + b.__num * a.__den,
+ a.__den * b.__den)
+ except OverflowError:
+ return rat(long(a.__num) * long(b.__den) +
+ long(b.__num) * long(a.__den),
+ long(a.__den) * long(b.__den))
+
+ def __radd__(b, a):
+ return Rat(a) + b
+
+ # a - b
+ def __sub__(a, b):
+ try:
+ return rat(a.__num * b.__den - b.__num * a.__den,
+ a.__den * b.__den)
+ except OverflowError:
+ return rat(long(a.__num) * long(b.__den) -
+ long(b.__num) * long(a.__den),
+ long(a.__den) * long(b.__den))
+
+ def __rsub__(b, a):
+ return Rat(a) - b
+
+ # a * b
+ def __mul__(a, b):
+ try:
+ return rat(a.__num * b.__num, a.__den * b.__den)
+ except OverflowError:
+ return rat(long(a.__num) * long(b.__num),
+ long(a.__den) * long(b.__den))
+
+ def __rmul__(b, a):
+ return Rat(a) * b
+
+ # a / b
+ def __div__(a, b):
+ try:
+ return rat(a.__num * b.__den, a.__den * b.__num)
+ except OverflowError:
+ return rat(long(a.__num) * long(b.__den),
+ long(a.__den) * long(b.__num))
+
+ def __rdiv__(b, a):
+ return Rat(a) / b
+
+ # a % b
+ def __mod__(a, b):
+ div = a / b
+ try:
+ div = int(div)
+ except OverflowError:
+ div = long(div)
+ return a - b * div
+
+ def __rmod__(b, a):
+ return Rat(a) % b
+
+ # a ** b
+ def __pow__(a, b):
+ if b.__den != 1:
+ if isinstance(a.__num, complex):
+ a = complex(a)
+ else:
+ a = float(a)
+ if isinstance(b.__num, complex):
+ b = complex(b)
+ else:
+ b = float(b)
+ return a ** b
+ try:
+ return rat(a.__num ** b.__num, a.__den ** b.__num)
+ except OverflowError:
+ return rat(long(a.__num) ** b.__num,
+ long(a.__den) ** b.__num)
+
+ def __rpow__(b, a):
+ return Rat(a) ** b
+
+ # -a
+ def __neg__(a):
+ try:
+ return rat(-a.__num, a.__den)
+ except OverflowError:
+ # a.__num == sys.maxint
+ return rat(-long(a.__num), a.__den)
+
+ # abs(a)
+ def __abs__(a):
+ return rat(abs(a.__num), a.__den)
+
+ # int(a)
+ def __int__(a):
+ return int(a.__num / a.__den)
+
+ # long(a)
+ def __long__(a):
+ return long(a.__num) / long(a.__den)
+
+ # float(a)
+ def __float__(a):
+ return float(a.__num) / float(a.__den)
+
+ # complex(a)
+ def __complex__(a):
+ return complex(a.__num) / complex(a.__den)
+
+ # cmp(a,b)
+ def __cmp__(a, b):
+ diff = Rat(a - b)
+ if diff.__num < 0:
+ return -1
+ elif diff.__num > 0:
+ return 1
+ else:
+ return 0
+
+ def __rcmp__(b, a):
+ return cmp(Rat(a), b)
+
+ # a != 0
+ def __nonzero__(a):
+ return a.__num != 0
+
+ # coercion
+ def __coerce__(a, b):
+ return a, Rat(b)
+
+def test():
+ '''\
+ Test function for rat module.
+
+ The expected output is (module some differences in floating
+ precission):
+ -1
+ -1
+ 0 0L 0.1 (0.1+0j)
+ [Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)]
+ [Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)]
+ 0
+ (11/10)
+ (11/10)
+ 1.1
+ OK
+ 2 1.5 (3/2) (1.5+1.5j) (15707963/5000000)
+ 2 2 2.0 (2+0j)
+
+ 4 0 4 1 4 0
+ 3.5 0.5 3.0 1.33333333333 2.82842712475 1
+ (7/2) (1/2) 3 (4/3) 2.82842712475 1
+ (3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1
+ 1.5 1 1.5 (1.5+0j)
+
+ 3.5 -0.5 3.0 0.75 2.25 -1
+ 3.0 0.0 2.25 1.0 1.83711730709 0
+ 3.0 0.0 2.25 1.0 1.83711730709 1
+ (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
+ (3/2) 1 1.5 (1.5+0j)
+
+ (7/2) (-1/2) 3 (3/4) (9/4) -1
+ 3.0 0.0 2.25 1.0 1.83711730709 -1
+ 3 0 (9/4) 1 1.83711730709 0
+ (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
+ (1.5+1.5j) (1.5+1.5j)
+
+ (3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1
+ (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
+ (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
+ (3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0
+ '''
+ print rat(-1L, 1)
+ print rat(1, -1)
+ a = rat(1, 10)
+ print int(a), long(a), float(a), complex(a)
+ b = rat(2, 5)
+ l = [a+b, a-b, a*b, a/b]
+ print l
+ l.sort()
+ print l
+ print rat(0, 1)
+ print a+1
+ print a+1L
+ print a+1.0
+ try:
+ print rat(1, 0)
+ raise SystemError, 'should have been ZeroDivisionError'
+ except ZeroDivisionError:
+ print 'OK'
+ print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000)
+ list = [2, 1.5, rat(3,2), 1.5+1.5j]
+ for i in list:
+ print i,
+ if not isinstance(i, complex):
+ print int(i), float(i),
+ print complex(i)
+ print
+ for j in list:
+ print i + j, i - j, i * j, i / j, i ** j,
+ if not (isinstance(i, complex) or
+ isinstance(j, complex)):
+ print cmp(i, j)
+ print
+
+
+if __name__ == '__main__':
+ test()