diff options
author | cinap_lenrek <cinap_lenrek@localhost> | 2011-05-03 11:25:13 +0000 |
---|---|---|
committer | cinap_lenrek <cinap_lenrek@localhost> | 2011-05-03 11:25:13 +0000 |
commit | 458120dd40db6b4df55a4e96b650e16798ef06a0 (patch) | |
tree | 8f82685be24fef97e715c6f5ca4c68d34d5074ee /sys/src/cmd/python/Doc/api/concrete.tex | |
parent | 3a742c699f6806c1145aea5149bf15de15a0afd7 (diff) |
add hg and python
Diffstat (limited to 'sys/src/cmd/python/Doc/api/concrete.tex')
-rw-r--r-- | sys/src/cmd/python/Doc/api/concrete.tex | 3203 |
1 files changed, 3203 insertions, 0 deletions
diff --git a/sys/src/cmd/python/Doc/api/concrete.tex b/sys/src/cmd/python/Doc/api/concrete.tex new file mode 100644 index 000000000..e1f3e9a1f --- /dev/null +++ b/sys/src/cmd/python/Doc/api/concrete.tex @@ -0,0 +1,3203 @@ +\chapter{Concrete Objects Layer \label{concrete}} + + +The functions in this chapter are specific to certain Python object +types. Passing them an object of the wrong type is not a good idea; +if you receive an object from a Python program and you are not sure +that it has the right type, you must perform a type check first; +for example, to check that an object is a dictionary, use +\cfunction{PyDict_Check()}. The chapter is structured like the +``family tree'' of Python object types. + +\warning{While the functions described in this chapter carefully check +the type of the objects which are passed in, many of them do not check +for \NULL{} being passed instead of a valid object. Allowing \NULL{} +to be passed in can cause memory access violations and immediate +termination of the interpreter.} + + +\section{Fundamental Objects \label{fundamental}} + +This section describes Python type objects and the singleton object +\code{None}. + + +\subsection{Type Objects \label{typeObjects}} + +\obindex{type} +\begin{ctypedesc}{PyTypeObject} + The C structure of the objects used to describe built-in types. +\end{ctypedesc} + +\begin{cvardesc}{PyObject*}{PyType_Type} + This is the type object for type objects; it is the same object as + \code{type} and \code{types.TypeType} in the Python layer. + \withsubitem{(in module types)}{\ttindex{TypeType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o} + Return true if the object \var{o} is a type object, including + instances of types derived from the standard type object. Return + false in all other cases. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyType_CheckExact}{PyObject *o} + Return true if the object \var{o} is a type object, but not a + subtype of the standard type object. Return false in all other + cases. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature} + Return true if the type object \var{o} sets the feature + \var{feature}. Type features are denoted by single bit flags. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyType_IS_GC}{PyObject *o} + Return true if the type object includes support for the cycle + detector; this tests the type flag \constant{Py_TPFLAGS_HAVE_GC}. + \versionadded{2.0} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyType_IsSubtype}{PyTypeObject *a, PyTypeObject *b} + Return true if \var{a} is a subtype of \var{b}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyType_GenericAlloc}{PyTypeObject *type, + Py_ssize_t nitems} + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyType_GenericNew}{PyTypeObject *type, + PyObject *args, PyObject *kwds} + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyType_Ready}{PyTypeObject *type} + Finalize a type object. This should be called on all type objects + to finish their initialization. This function is responsible for + adding inherited slots from a type's base class. Return \code{0} + on success, or return \code{-1} and sets an exception on error. + \versionadded{2.2} +\end{cfuncdesc} + + +\subsection{The None Object \label{noneObject}} + +\obindex{None} +Note that the \ctype{PyTypeObject} for \code{None} is not directly +exposed in the Python/C API. Since \code{None} is a singleton, +testing for object identity (using \samp{==} in C) is sufficient. +There is no \cfunction{PyNone_Check()} function for the same reason. + +\begin{cvardesc}{PyObject*}{Py_None} + The Python \code{None} object, denoting lack of value. This object + has no methods. It needs to be treated just like any other object + with respect to reference counts. +\end{cvardesc} + +\begin{csimplemacrodesc}{Py_RETURN_NONE} + Properly handle returning \cdata{Py_None} from within a C function. +\end{csimplemacrodesc} + + +\section{Numeric Objects \label{numericObjects}} + +\obindex{numeric} + + +\subsection{Plain Integer Objects \label{intObjects}} + +\obindex{integer} +\begin{ctypedesc}{PyIntObject} + This subtype of \ctype{PyObject} represents a Python integer + object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyInt_Type} + This instance of \ctype{PyTypeObject} represents the Python plain + integer type. This is the same object as \code{int} and + \code{types.IntType}. + \withsubitem{(in modules types)}{\ttindex{IntType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *o} + Return true if \var{o} is of type \cdata{PyInt_Type} or a subtype + of \cdata{PyInt_Type}. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyInt_CheckExact}{PyObject *o} + Return true if \var{o} is of type \cdata{PyInt_Type}, but not a + subtype of \cdata{PyInt_Type}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyInt_FromString}{char *str, char **pend, + int base} + Return a new \ctype{PyIntObject} or \ctype{PyLongObject} based on the + string value in \var{str}, which is interpreted according to the radix in + \var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will point to + the first character in \var{str} which follows the representation of the + number. If \var{base} is \code{0}, the radix will be determined based on + the leading characters of \var{str}: if \var{str} starts with \code{'0x'} + or \code{'0X'}, radix 16 will be used; if \var{str} starts with + \code{'0'}, radix 8 will be used; otherwise radix 10 will be used. If + \var{base} is not \code{0}, it must be between \code{2} and \code{36}, + inclusive. Leading spaces are ignored. If there are no digits, + \exception{ValueError} will be raised. If the string represents a number + too large to be contained within the machine's \ctype{long int} type and + overflow warnings are being suppressed, a \ctype{PyLongObject} will be + returned. If overflow warnings are not being suppressed, \NULL{} will be + returned in this case. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival} + Create a new integer object with a value of \var{ival}. + + The current implementation keeps an array of integer objects for all + integers between \code{-5} and \code{256}, when you create an int in + that range you actually just get back a reference to the existing + object. So it should be possible to change the value of \code{1}. I + suspect the behaviour of Python in this case is undefined. :-) +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyInt_FromSsize_t}{Py_ssize_t ival} + Create a new integer object with a value of \var{ival}. + If the value exceeds \code{LONG_MAX}, a long integer object is + returned. + + \versionadded{2.5} +\end{cfuncdesc} + +\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io} + Will first attempt to cast the object to a \ctype{PyIntObject}, if + it is not already one, and then return its value. If there is an + error, \code{-1} is returned, and the caller should check + \code{PyErr_Occurred()} to find out whether there was an error, or + whether the value just happened to be -1. +\end{cfuncdesc} + +\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io} + Return the value of the object \var{io}. No error checking is + performed. +\end{cfuncdesc} + +\begin{cfuncdesc}{unsigned long}{PyInt_AsUnsignedLongMask}{PyObject *io} + Will first attempt to cast the object to a \ctype{PyIntObject} or + \ctype{PyLongObject}, if it is not already one, and then return its + value as unsigned long. This function does not check for overflow. + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyInt_AsUnsignedLongLongMask}{PyObject *io} + Will first attempt to cast the object to a \ctype{PyIntObject} or + \ctype{PyLongObject}, if it is not already one, and then return its + value as unsigned long long, without checking for overflow. + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyInt_AsSsize_t}{PyObject *io} + Will first attempt to cast the object to a \ctype{PyIntObject} or + \ctype{PyLongObject}, if it is not already one, and then return its + value as \ctype{Py_ssize_t}. + \versionadded{2.5} +\end{cfuncdesc} + +\begin{cfuncdesc}{long}{PyInt_GetMax}{} + Return the system's idea of the largest integer it can handle + (\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system + header files). +\end{cfuncdesc} + +\subsection{Boolean Objects \label{boolObjects}} + +Booleans in Python are implemented as a subclass of integers. There +are only two booleans, \constant{Py_False} and \constant{Py_True}. As +such, the normal creation and deletion functions don't apply to +booleans. The following macros are available, however. + +\begin{cfuncdesc}{int}{PyBool_Check}{PyObject *o} + Return true if \var{o} is of type \cdata{PyBool_Type}. + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cvardesc}{PyObject*}{Py_False} + The Python \code{False} object. This object has no methods. It needs to + be treated just like any other object with respect to reference counts. +\end{cvardesc} + +\begin{cvardesc}{PyObject*}{Py_True} + The Python \code{True} object. This object has no methods. It needs to + be treated just like any other object with respect to reference counts. +\end{cvardesc} + +\begin{csimplemacrodesc}{Py_RETURN_FALSE} + Return \constant{Py_False} from a function, properly incrementing its + reference count. +\versionadded{2.4} +\end{csimplemacrodesc} + +\begin{csimplemacrodesc}{Py_RETURN_TRUE} + Return \constant{Py_True} from a function, properly incrementing its + reference count. +\versionadded{2.4} +\end{csimplemacrodesc} + +\begin{cfuncdesc}{PyObject*}{PyBool_FromLong}{long v} + Return a new reference to \constant{Py_True} or \constant{Py_False} + depending on the truth value of \var{v}. +\versionadded{2.3} +\end{cfuncdesc} + +\subsection{Long Integer Objects \label{longObjects}} + +\obindex{long integer} +\begin{ctypedesc}{PyLongObject} + This subtype of \ctype{PyObject} represents a Python long integer + object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyLong_Type} + This instance of \ctype{PyTypeObject} represents the Python long + integer type. This is the same object as \code{long} and + \code{types.LongType}. + \withsubitem{(in modules types)}{\ttindex{LongType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p} + Return true if its argument is a \ctype{PyLongObject} or a subtype + of \ctype{PyLongObject}. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyLong_CheckExact}{PyObject *p} + Return true if its argument is a \ctype{PyLongObject}, but not a + subtype of \ctype{PyLongObject}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v} + Return a new \ctype{PyLongObject} object from \var{v}, or \NULL{} + on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v} + Return a new \ctype{PyLongObject} object from a C \ctype{unsigned + long}, or \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromLongLong}{PY_LONG_LONG v} + Return a new \ctype{PyLongObject} object from a C \ctype{long long}, + or \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLongLong}{unsigned PY_LONG_LONG v} + Return a new \ctype{PyLongObject} object from a C \ctype{unsigned + long long}, or \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v} + Return a new \ctype{PyLongObject} object from the integer part of + \var{v}, or \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend, + int base} + Return a new \ctype{PyLongObject} based on the string value in + \var{str}, which is interpreted according to the radix in + \var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will + point to the first character in \var{str} which follows the + representation of the number. If \var{base} is \code{0}, the radix + will be determined based on the leading characters of \var{str}: if + \var{str} starts with \code{'0x'} or \code{'0X'}, radix 16 will be + used; if \var{str} starts with \code{'0'}, radix 8 will be used; + otherwise radix 10 will be used. If \var{base} is not \code{0}, it + must be between \code{2} and \code{36}, inclusive. Leading spaces + are ignored. If there are no digits, \exception{ValueError} will be + raised. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromUnicode}{Py_UNICODE *u, + Py_ssize_t length, int base} + Convert a sequence of Unicode digits to a Python long integer + value. The first parameter, \var{u}, points to the first character + of the Unicode string, \var{length} gives the number of characters, + and \var{base} is the radix for the conversion. The radix must be + in the range [2, 36]; if it is out of range, \exception{ValueError} + will be raised. + \versionadded{1.6} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyLong_FromVoidPtr}{void *p} + Create a Python integer or long integer from the pointer \var{p}. + The pointer value can be retrieved from the resulting value using + \cfunction{PyLong_AsVoidPtr()}. + \versionadded{1.5.2} + \versionchanged[If the integer is larger than LONG_MAX, + a positive long integer is returned]{2.5} + \end{cfuncdesc} + +\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong} + Return a C \ctype{long} representation of the contents of + \var{pylong}. If \var{pylong} is greater than + \constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError} + is raised. + \withsubitem{(built-in exception)}{\ttindex{OverflowError}} +\end{cfuncdesc} + +\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong} + Return a C \ctype{unsigned long} representation of the contents of + \var{pylong}. If \var{pylong} is greater than + \constant{ULONG_MAX}\ttindex{ULONG_MAX}, an + \exception{OverflowError} is raised. + \withsubitem{(built-in exception)}{\ttindex{OverflowError}} +\end{cfuncdesc} + +\begin{cfuncdesc}{PY_LONG_LONG}{PyLong_AsLongLong}{PyObject *pylong} + Return a C \ctype{long long} from a Python long integer. If + \var{pylong} cannot be represented as a \ctype{long long}, an + \exception{OverflowError} will be raised. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLong}{PyObject + *pylong} + Return a C \ctype{unsigned long long} from a Python long integer. + If \var{pylong} cannot be represented as an \ctype{unsigned long + long}, an \exception{OverflowError} will be raised if the value is + positive, or a \exception{TypeError} will be raised if the value is + negative. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLongMask}{PyObject *io} + Return a C \ctype{unsigned long} from a Python long integer, without + checking for overflow. + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLongMask}{PyObject *io} + Return a C \ctype{unsigned long long} from a Python long integer, without + checking for overflow. + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong} + Return a C \ctype{double} representation of the contents of + \var{pylong}. If \var{pylong} cannot be approximately represented + as a \ctype{double}, an \exception{OverflowError} exception is + raised and \code{-1.0} will be returned. +\end{cfuncdesc} + +\begin{cfuncdesc}{void*}{PyLong_AsVoidPtr}{PyObject *pylong} + Convert a Python integer or long integer \var{pylong} to a C + \ctype{void} pointer. If \var{pylong} cannot be converted, an + \exception{OverflowError} will be raised. This is only assured to + produce a usable \ctype{void} pointer for values created with + \cfunction{PyLong_FromVoidPtr()}. + \versionadded{1.5.2} + \versionchanged[For values outside 0..LONG_MAX, both signed and + unsigned integers are acccepted]{2.5} +\end{cfuncdesc} + + +\subsection{Floating Point Objects \label{floatObjects}} + +\obindex{floating point} +\begin{ctypedesc}{PyFloatObject} + This subtype of \ctype{PyObject} represents a Python floating point + object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyFloat_Type} + This instance of \ctype{PyTypeObject} represents the Python floating + point type. This is the same object as \code{float} and + \code{types.FloatType}. + \withsubitem{(in modules types)}{\ttindex{FloatType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p} + Return true if its argument is a \ctype{PyFloatObject} or a subtype + of \ctype{PyFloatObject}. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFloat_CheckExact}{PyObject *p} + Return true if its argument is a \ctype{PyFloatObject}, but not a + subtype of \ctype{PyFloatObject}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFloat_FromString}{PyObject *str, char **pend} + Create a \ctype{PyFloatObject} object based on the string value in + \var{str}, or \NULL{} on failure. The \var{pend} argument is ignored. It + remains only for backward compatibility. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v} + Create a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on + failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat} + Return a C \ctype{double} representation of the contents of + \var{pyfloat}. +\end{cfuncdesc} + +\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat} + Return a C \ctype{double} representation of the contents of + \var{pyfloat}, but without error checking. +\end{cfuncdesc} + + +\subsection{Complex Number Objects \label{complexObjects}} + +\obindex{complex number} +Python's complex number objects are implemented as two distinct types +when viewed from the C API: one is the Python object exposed to +Python programs, and the other is a C structure which represents the +actual complex number value. The API provides functions for working +with both. + +\subsubsection{Complex Numbers as C Structures} + +Note that the functions which accept these structures as parameters +and return them as results do so \emph{by value} rather than +dereferencing them through pointers. This is consistent throughout +the API. + +\begin{ctypedesc}{Py_complex} + The C structure which corresponds to the value portion of a Python + complex number object. Most of the functions for dealing with + complex number objects use structures of this type as input or + output values, as appropriate. It is defined as: + +\begin{verbatim} +typedef struct { + double real; + double imag; +} Py_complex; +\end{verbatim} +\end{ctypedesc} + +\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right} + Return the sum of two complex numbers, using the C + \ctype{Py_complex} representation. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right} + Return the difference between two complex numbers, using the C + \ctype{Py_complex} representation. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex} + Return the negation of the complex number \var{complex}, using the C + \ctype{Py_complex} representation. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right} + Return the product of two complex numbers, using the C + \ctype{Py_complex} representation. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend, + Py_complex divisor} + Return the quotient of two complex numbers, using the C + \ctype{Py_complex} representation. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp} + Return the exponentiation of \var{num} by \var{exp}, using the C + \ctype{Py_complex} representation. +\end{cfuncdesc} + + +\subsubsection{Complex Numbers as Python Objects} + +\begin{ctypedesc}{PyComplexObject} + This subtype of \ctype{PyObject} represents a Python complex number + object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyComplex_Type} + This instance of \ctype{PyTypeObject} represents the Python complex + number type. It is the same object as \code{complex} and + \code{types.ComplexType}. +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p} + Return true if its argument is a \ctype{PyComplexObject} or a + subtype of \ctype{PyComplexObject}. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyComplex_CheckExact}{PyObject *p} + Return true if its argument is a \ctype{PyComplexObject}, but not a + subtype of \ctype{PyComplexObject}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v} + Create a new Python complex number object from a C + \ctype{Py_complex} value. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag} + Return a new \ctype{PyComplexObject} object from \var{real} and + \var{imag}. +\end{cfuncdesc} + +\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op} + Return the real part of \var{op} as a C \ctype{double}. +\end{cfuncdesc} + +\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op} + Return the imaginary part of \var{op} as a C \ctype{double}. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op} + Return the \ctype{Py_complex} value of the complex number + \var{op}. +\end{cfuncdesc} + + + +\section{Sequence Objects \label{sequenceObjects}} + +\obindex{sequence} +Generic operations on sequence objects were discussed in the previous +chapter; this section deals with the specific kinds of sequence +objects that are intrinsic to the Python language. + + +\subsection{String Objects \label{stringObjects}} + +These functions raise \exception{TypeError} when expecting a string +parameter and are called with a non-string parameter. + +\obindex{string} +\begin{ctypedesc}{PyStringObject} + This subtype of \ctype{PyObject} represents a Python string object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyString_Type} + This instance of \ctype{PyTypeObject} represents the Python string + type; it is the same object as \code{str} and \code{types.StringType} + in the Python layer. + \withsubitem{(in module types)}{\ttindex{StringType}}. +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o} + Return true if the object \var{o} is a string object or an instance + of a subtype of the string type. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyString_CheckExact}{PyObject *o} + Return true if the object \var{o} is a string object, but not an + instance of a subtype of the string type. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v} + Return a new string object with a copy of the string \var{v} as value + on success, and \NULL{} on failure. The parameter \var{v} must not be + \NULL{}; it will not be checked. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v, + Py_ssize_t len} + Return a new string object with a copy of the string \var{v} as value + and length \var{len} on success, and \NULL{} on failure. If \var{v} is + \NULL{}, the contents of the string are uninitialized. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_FromFormat}{const char *format, ...} + Take a C \cfunction{printf()}-style \var{format} string and a + variable number of arguments, calculate the size of the resulting + Python string and return a string with the values formatted into + it. The variable arguments must be C types and must correspond + exactly to the format characters in the \var{format} string. The + following format characters are allowed: + + % This should be exactly the same as the table in PyErr_Format. + % One should just refer to the other. + + % The descriptions for %zd and %zu are wrong, but the truth is complicated + % because not all compilers support the %z width modifier -- we fake it + % when necessary via interpolating PY_FORMAT_SIZE_T. + + % %u, %lu, %zu should have "new in Python 2.5" blurbs. + + \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment} + \lineiii{\%\%}{\emph{n/a}}{The literal \% character.} + \lineiii{\%c}{int}{A single character, represented as an C int.} + \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.} + \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.} + \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.} + \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.} + \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.} + \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.} + \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.} + \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.} + \lineiii{\%s}{char*}{A null-terminated C character array.} + \lineiii{\%p}{void*}{The hex representation of a C pointer. + Mostly equivalent to \code{printf("\%p")} except that it is + guaranteed to start with the literal \code{0x} regardless of + what the platform's \code{printf} yields.} + \end{tableiii} + + An unrecognized format character causes all the rest of the format + string to be copied as-is to the result string, and any extra + arguments discarded. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_FromFormatV}{const char *format, + va_list vargs} + Identical to \function{PyString_FromFormat()} except that it takes + exactly two arguments. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyString_Size}{PyObject *string} + Return the length of the string in string object \var{string}. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyString_GET_SIZE}{PyObject *string} + Macro form of \cfunction{PyString_Size()} but without error + checking. +\end{cfuncdesc} + +\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string} + Return a NUL-terminated representation of the contents of + \var{string}. The pointer refers to the internal buffer of + \var{string}, not a copy. The data must not be modified in any way, + unless the string was just created using + \code{PyString_FromStringAndSize(NULL, \var{size})}. + It must not be deallocated. If \var{string} is a Unicode object, + this function computes the default encoding of \var{string} and + operates on that. If \var{string} is not a string object at all, + \cfunction{PyString_AsString()} returns \NULL{} and raises + \exception{TypeError}. +\end{cfuncdesc} + +\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string} + Macro form of \cfunction{PyString_AsString()} but without error + checking. Only string objects are supported; no Unicode objects + should be passed. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyString_AsStringAndSize}{PyObject *obj, + char **buffer, + Py_ssize_t *length} + Return a NUL-terminated representation of the contents of the + object \var{obj} through the output variables \var{buffer} and + \var{length}. + + The function accepts both string and Unicode objects as input. For + Unicode objects it returns the default encoded version of the + object. If \var{length} is \NULL{}, the resulting buffer may not + contain NUL characters; if it does, the function returns \code{-1} + and a \exception{TypeError} is raised. + + The buffer refers to an internal string buffer of \var{obj}, not a + copy. The data must not be modified in any way, unless the string + was just created using \code{PyString_FromStringAndSize(NULL, + \var{size})}. It must not be deallocated. If \var{string} is a + Unicode object, this function computes the default encoding of + \var{string} and operates on that. If \var{string} is not a string + object at all, \cfunction{PyString_AsStringAndSize()} returns + \code{-1} and raises \exception{TypeError}. +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string, + PyObject *newpart} + Create a new string object in \var{*string} containing the contents + of \var{newpart} appended to \var{string}; the caller will own the + new reference. The reference to the old value of \var{string} will + be stolen. If the new string cannot be created, the old reference + to \var{string} will still be discarded and the value of + \var{*string} will be set to \NULL{}; the appropriate exception will + be set. +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string, + PyObject *newpart} + Create a new string object in \var{*string} containing the contents + of \var{newpart} appended to \var{string}. This version decrements + the reference count of \var{newpart}. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, Py_ssize_t newsize} + A way to resize a string object even though it is ``immutable''. + Only use this to build up a brand new string object; don't use this + if the string may already be known in other parts of the code. It + is an error to call this function if the refcount on the input string + object is not one. + Pass the address of an existing string object as an lvalue (it may + be written into), and the new size desired. On success, \var{*string} + holds the resized string object and \code{0} is returned; the address in + \var{*string} may differ from its input value. If the + reallocation fails, the original string object at \var{*string} is + deallocated, \var{*string} is set to \NULL{}, a memory exception is set, + and \code{-1} is returned. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format, + PyObject *args} + Return a new string object from \var{format} and \var{args}. + Analogous to \code{\var{format} \%\ \var{args}}. The \var{args} + argument must be a tuple. +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string} + Intern the argument \var{*string} in place. The argument must be + the address of a pointer variable pointing to a Python string + object. If there is an existing interned string that is the same as + \var{*string}, it sets \var{*string} to it (decrementing the + reference count of the old string object and incrementing the + reference count of the interned string object), otherwise it leaves + \var{*string} alone and interns it (incrementing its reference + count). (Clarification: even though there is a lot of talk about + reference counts, think of this function as reference-count-neutral; + you own the object after the call if and only if you owned it before + the call.) +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v} + A combination of \cfunction{PyString_FromString()} and + \cfunction{PyString_InternInPlace()}, returning either a new string + object that has been interned, or a new (``owned'') reference to an + earlier interned string object with the same value. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_Decode}{const char *s, + Py_ssize_t size, + const char *encoding, + const char *errors} + Create an object by decoding \var{size} bytes of the encoded + buffer \var{s} using the codec registered for + \var{encoding}. \var{encoding} and \var{errors} have the same + meaning as the parameters of the same name in the + \function{unicode()} built-in function. The codec to be used is + looked up using the Python codec registry. Return \NULL{} if + an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_AsDecodedObject}{PyObject *str, + const char *encoding, + const char *errors} + Decode a string object by passing it to the codec registered for + \var{encoding} and return the result as Python + object. \var{encoding} and \var{errors} have the same meaning as the + parameters of the same name in the string \method{encode()} method. + The codec to be used is looked up using the Python codec registry. + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_Encode}{const char *s, + Py_ssize_t size, + const char *encoding, + const char *errors} + Encode the \ctype{char} buffer of the given size by passing it to + the codec registered for \var{encoding} and return a Python object. + \var{encoding} and \var{errors} have the same meaning as the + parameters of the same name in the string \method{encode()} method. + The codec to be used is looked up using the Python codec + registry. Return \NULL{} if an exception was raised by the + codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyString_AsEncodedObject}{PyObject *str, + const char *encoding, + const char *errors} + Encode a string object using the codec registered for + \var{encoding} and return the result as Python object. + \var{encoding} and \var{errors} have the same meaning as the + parameters of the same name in the string \method{encode()} method. + The codec to be used is looked up using the Python codec registry. + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + + +\subsection{Unicode Objects \label{unicodeObjects}} +\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com} + +%--- Unicode Type ------------------------------------------------------- + +These are the basic Unicode object types used for the Unicode +implementation in Python: + +\begin{ctypedesc}{Py_UNICODE} + This type represents the storage type which is used by Python + internally as basis for holding Unicode ordinals. Python's default + builds use a 16-bit type for \ctype{Py_UNICODE} and store Unicode + values internally as UCS2. It is also possible to build a UCS4 + version of Python (most recent Linux distributions come with UCS4 + builds of Python). These builds then use a 32-bit type for + \ctype{Py_UNICODE} and store Unicode data internally as UCS4. On + platforms where \ctype{wchar_t} is available and compatible with the + chosen Python Unicode build variant, \ctype{Py_UNICODE} is a typedef + alias for \ctype{wchar_t} to enhance native platform compatibility. + On all other platforms, \ctype{Py_UNICODE} is a typedef alias for + either \ctype{unsigned short} (UCS2) or \ctype{unsigned long} + (UCS4). +\end{ctypedesc} + +Note that UCS2 and UCS4 Python builds are not binary compatible. +Please keep this in mind when writing extensions or interfaces. + +\begin{ctypedesc}{PyUnicodeObject} + This subtype of \ctype{PyObject} represents a Python Unicode object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyUnicode_Type} + This instance of \ctype{PyTypeObject} represents the Python Unicode + type. It is exposed to Python code as \code{unicode} and + \code{types.UnicodeType}. +\end{cvardesc} + +The following APIs are really C macros and can be used to do fast +checks and to access internal read-only data of Unicode objects: + +\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o} + Return true if the object \var{o} is a Unicode object or an + instance of a Unicode subtype. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyUnicode_CheckExact}{PyObject *o} + Return true if the object \var{o} is a Unicode object, but not an + instance of a subtype. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_SIZE}{PyObject *o} + Return the size of the object. \var{o} has to be a + \ctype{PyUnicodeObject} (not checked). +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_DATA_SIZE}{PyObject *o} + Return the size of the object's internal buffer in bytes. \var{o} + has to be a \ctype{PyUnicodeObject} (not checked). +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AS_UNICODE}{PyObject *o} + Return a pointer to the internal \ctype{Py_UNICODE} buffer of the + object. \var{o} has to be a \ctype{PyUnicodeObject} (not checked). +\end{cfuncdesc} + +\begin{cfuncdesc}{const char*}{PyUnicode_AS_DATA}{PyObject *o} + Return a pointer to the internal buffer of the object. + \var{o} has to be a \ctype{PyUnicodeObject} (not checked). +\end{cfuncdesc} + +% --- Unicode character properties --------------------------------------- + +Unicode provides many different character properties. The most often +needed ones are available through these macros which are mapped to C +functions depending on the Python configuration. + +\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a whitespace + character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a lowercase character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is an uppercase + character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a titlecase character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a linebreak character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a decimal character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a digit character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is a numeric character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISALPHA}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is an alphabetic + character. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_ISALNUM}{Py_UNICODE ch} + Return 1 or 0 depending on whether \var{ch} is an alphanumeric + character. +\end{cfuncdesc} + +These APIs can be used for fast direct character conversions: + +\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch} + Return the character \var{ch} converted to lower case. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch} + Return the character \var{ch} converted to upper case. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch} + Return the character \var{ch} converted to title case. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch} + Return the character \var{ch} converted to a decimal positive + integer. Return \code{-1} if this is not possible. This macro + does not raise exceptions. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch} + Return the character \var{ch} converted to a single digit integer. + Return \code{-1} if this is not possible. This macro does not raise + exceptions. +\end{cfuncdesc} + +\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch} + Return the character \var{ch} converted to a double. + Return \code{-1.0} if this is not possible. This macro does not raise + exceptions. +\end{cfuncdesc} + +% --- Plain Py_UNICODE --------------------------------------------------- + +To create Unicode objects and access their basic sequence properties, +use these APIs: + +\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u, + Py_ssize_t size} + Create a Unicode Object from the Py_UNICODE buffer \var{u} of the + given size. \var{u} may be \NULL{} which causes the contents to be + undefined. It is the user's responsibility to fill in the needed + data. The buffer is copied into the new object. If the buffer is + not \NULL{}, the return value might be a shared object. Therefore, + modification of the resulting Unicode object is only allowed when + \var{u} is \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AsUnicode}{PyObject *unicode} + Return a read-only pointer to the Unicode object's internal + \ctype{Py_UNICODE} buffer, \NULL{} if \var{unicode} is not a Unicode + object. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GetSize}{PyObject *unicode} + Return the length of the Unicode object. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_FromEncodedObject}{PyObject *obj, + const char *encoding, + const char *errors} + Coerce an encoded object \var{obj} to an Unicode object and return a + reference with incremented refcount. + + String and other char buffer compatible objects are decoded + according to the given encoding and using the error handling + defined by errors. Both can be \NULL{} to have the interface + use the default values (see the next section for details). + + All other objects, including Unicode objects, cause a + \exception{TypeError} to be set. + + The API returns \NULL{} if there was an error. The caller is + responsible for decref'ing the returned objects. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj} + Shortcut for \code{PyUnicode_FromEncodedObject(obj, NULL, "strict")} + which is used throughout the interpreter whenever coercion to + Unicode is needed. +\end{cfuncdesc} + +% --- wchar_t support for platforms which support it --------------------- + +If the platform supports \ctype{wchar_t} and provides a header file +wchar.h, Python can interface directly to this type using the +following functions. Support is optimized if Python's own +\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w, + Py_ssize_t size} + Create a Unicode object from the \ctype{wchar_t} buffer \var{w} of + the given size. Return \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode, + wchar_t *w, + Py_ssize_t size} + Copy the Unicode object contents into the \ctype{wchar_t} buffer + \var{w}. At most \var{size} \ctype{wchar_t} characters are copied + (excluding a possibly trailing 0-termination character). Return + the number of \ctype{wchar_t} characters copied or -1 in case of an + error. Note that the resulting \ctype{wchar_t} string may or may + not be 0-terminated. It is the responsibility of the caller to make + sure that the \ctype{wchar_t} string is 0-terminated in case this is + required by the application. +\end{cfuncdesc} + + +\subsubsection{Built-in Codecs \label{builtinCodecs}} + +Python provides a set of builtin codecs which are written in C +for speed. All of these codecs are directly usable via the +following functions. + +Many of the following APIs take two arguments encoding and +errors. These parameters encoding and errors have the same semantics +as the ones of the builtin unicode() Unicode object constructor. + +Setting encoding to \NULL{} causes the default encoding to be used +which is \ASCII. The file system calls should use +\cdata{Py_FileSystemDefaultEncoding} as the encoding for file +names. This variable should be treated as read-only: On some systems, +it will be a pointer to a static string, on others, it will change at +run-time (such as when the application invokes setlocale). + +Error handling is set by errors which may also be set to \NULL{} +meaning to use the default handling defined for the codec. Default +error handling for all builtin codecs is ``strict'' +(\exception{ValueError} is raised). + +The codecs all use a similar interface. Only deviation from the +following generic ones are documented for simplicity. + +% --- Generic Codecs ----------------------------------------------------- + +These are the generic codec APIs: + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s, + Py_ssize_t size, + const char *encoding, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the encoded + string \var{s}. \var{encoding} and \var{errors} have the same + meaning as the parameters of the same name in the + \function{unicode()} builtin function. The codec to be used is + looked up using the Python codec registry. Return \NULL{} if an + exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s, + Py_ssize_t size, + const char *encoding, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size and return + a Python string object. \var{encoding} and \var{errors} have the + same meaning as the parameters of the same name in the Unicode + \method{encode()} method. The codec to be used is looked up using + the Python codec registry. Return \NULL{} if an exception was + raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode, + const char *encoding, + const char *errors} + Encode a Unicode object and return the result as Python string + object. \var{encoding} and \var{errors} have the same meaning as the + parameters of the same name in the Unicode \method{encode()} method. + The codec to be used is looked up using the Python codec registry. + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- UTF-8 Codecs ------------------------------------------------------- + +These are the UTF-8 codec APIs: + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s, + Py_ssize_t size, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the UTF-8 + encoded string \var{s}. Return \NULL{} if an exception was raised + by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8Stateful}{const char *s, + Py_ssize_t size, + const char *errors, + Py_ssize_t *consumed} + If \var{consumed} is \NULL{}, behave like \cfunction{PyUnicode_DecodeUTF8()}. + If \var{consumed} is not \NULL{}, trailing incomplete UTF-8 byte sequences + will not be treated as an error. Those bytes will not be decoded and the + number of bytes that have been decoded will be stored in \var{consumed}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s, + Py_ssize_t size, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size using UTF-8 + and return a Python string object. Return \NULL{} if an exception + was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode} + Encode a Unicode objects using UTF-8 and return the result as + Python string object. Error handling is ``strict''. Return + \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- UTF-16 Codecs ------------------------------------------------------ */ + +These are the UTF-16 codec APIs: + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s, + Py_ssize_t size, + const char *errors, + int *byteorder} + Decode \var{length} bytes from a UTF-16 encoded buffer string and + return the corresponding Unicode object. \var{errors} (if + non-\NULL{}) defines the error handling. It defaults to ``strict''. + + If \var{byteorder} is non-\NULL{}, the decoder starts decoding using + the given byte order: + +\begin{verbatim} + *byteorder == -1: little endian + *byteorder == 0: native order + *byteorder == 1: big endian +\end{verbatim} + + and then switches according to all byte order marks (BOM) it finds + in the input data. BOMs are not copied into the resulting Unicode + string. After completion, \var{*byteorder} is set to the current + byte order at the end of input data. + + If \var{byteorder} is \NULL{}, the codec starts in native order mode. + + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16Stateful}{const char *s, + Py_ssize_t size, + const char *errors, + int *byteorder, + Py_ssize_t *consumed} + If \var{consumed} is \NULL{}, behave like + \cfunction{PyUnicode_DecodeUTF16()}. If \var{consumed} is not \NULL{}, + \cfunction{PyUnicode_DecodeUTF16Stateful()} will not treat trailing incomplete + UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair) + as an error. Those bytes will not be decoded and the number of bytes that + have been decoded will be stored in \var{consumed}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s, + Py_ssize_t size, + const char *errors, + int byteorder} + Return a Python string object holding the UTF-16 encoded value of + the Unicode data in \var{s}. If \var{byteorder} is not \code{0}, + output is written according to the following byte order: + +\begin{verbatim} + byteorder == -1: little endian + byteorder == 0: native byte order (writes a BOM mark) + byteorder == 1: big endian +\end{verbatim} + + If byteorder is \code{0}, the output string will always start with + the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark + is prepended. + + If \var{Py_UNICODE_WIDE} is defined, a single \ctype{Py_UNICODE} + value may get represented as a surrogate pair. If it is not + defined, each \ctype{Py_UNICODE} values is interpreted as an + UCS-2 character. + + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode} + Return a Python string using the UTF-16 encoding in native byte + order. The string always starts with a BOM mark. Error handling is + ``strict''. Return \NULL{} if an exception was raised by the + codec. +\end{cfuncdesc} + +% --- Unicode-Escape Codecs ---------------------------------------------- + +These are the ``Unicode Escape'' codec APIs: + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s, + Py_ssize_t size, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the + Unicode-Escape encoded string \var{s}. Return \NULL{} if an + exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s, + Py_ssize_t size} + Encode the \ctype{Py_UNICODE} buffer of the given size using + Unicode-Escape and return a Python string object. Return \NULL{} + if an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode} + Encode a Unicode objects using Unicode-Escape and return the + result as Python string object. Error handling is ``strict''. + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- Raw-Unicode-Escape Codecs ------------------------------------------ + +These are the ``Raw Unicode Escape'' codec APIs: + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s, + Py_ssize_t size, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the + Raw-Unicode-Escape encoded string \var{s}. Return \NULL{} if an + exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s, + Py_ssize_t size, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size using + Raw-Unicode-Escape and return a Python string object. Return + \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode} + Encode a Unicode objects using Raw-Unicode-Escape and return the + result as Python string object. Error handling is ``strict''. + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- Latin-1 Codecs ----------------------------------------------------- + +These are the Latin-1 codec APIs: +Latin-1 corresponds to the first 256 Unicode ordinals and only these +are accepted by the codecs during encoding. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s, + Py_ssize_t size, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the Latin-1 + encoded string \var{s}. Return \NULL{} if an exception was raised + by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s, + Py_ssize_t size, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size using + Latin-1 and return a Python string object. Return \NULL{} if an + exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode} + Encode a Unicode objects using Latin-1 and return the result as + Python string object. Error handling is ``strict''. Return + \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- ASCII Codecs ------------------------------------------------------- + +These are the \ASCII{} codec APIs. Only 7-bit \ASCII{} data is +accepted. All other codes generate errors. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s, + Py_ssize_t size, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the + \ASCII{} encoded string \var{s}. Return \NULL{} if an exception + was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s, + Py_ssize_t size, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size using + \ASCII{} and return a Python string object. Return \NULL{} if an + exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode} + Encode a Unicode objects using \ASCII{} and return the result as + Python string object. Error handling is ``strict''. Return + \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- Character Map Codecs ----------------------------------------------- + +These are the mapping codec APIs: + +This codec is special in that it can be used to implement many +different codecs (and this is in fact what was done to obtain most of +the standard codecs included in the \module{encodings} package). The +codec uses mapping to encode and decode characters. + +Decoding mappings must map single string characters to single Unicode +characters, integers (which are then interpreted as Unicode ordinals) +or None (meaning "undefined mapping" and causing an error). + +Encoding mappings must map single Unicode characters to single string +characters, integers (which are then interpreted as Latin-1 ordinals) +or None (meaning "undefined mapping" and causing an error). + +The mapping objects provided must only support the __getitem__ mapping +interface. + +If a character lookup fails with a LookupError, the character is +copied as-is meaning that its ordinal value will be interpreted as +Unicode or Latin-1 ordinal resp. Because of this, mappings only need +to contain those mappings which map characters to different code +points. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s, + Py_ssize_t size, + PyObject *mapping, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the encoded + string \var{s} using the given \var{mapping} object. Return + \NULL{} if an exception was raised by the codec. If \var{mapping} is \NULL{} + latin-1 decoding will be done. Else it can be a dictionary mapping byte or a + unicode string, which is treated as a lookup table. Byte values greater + that the length of the string and U+FFFE "characters" are treated as + "undefined mapping". + \versionchanged[Allowed unicode string as mapping argument]{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s, + Py_ssize_t size, + PyObject *mapping, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size using the + given \var{mapping} object and return a Python string object. + Return \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode, + PyObject *mapping} + Encode a Unicode objects using the given \var{mapping} object and + return the result as Python string object. Error handling is + ``strict''. Return \NULL{} if an exception was raised by the + codec. +\end{cfuncdesc} + +The following codec API is special in that maps Unicode to Unicode. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s, + Py_ssize_t size, + PyObject *table, + const char *errors} + Translate a \ctype{Py_UNICODE} buffer of the given length by + applying a character mapping \var{table} to it and return the + resulting Unicode object. Return \NULL{} when an exception was + raised by the codec. + + The \var{mapping} table must map Unicode ordinal integers to Unicode + ordinal integers or None (causing deletion of the character). + + Mapping tables need only provide the \method{__getitem__()} + interface; dictionaries and sequences work well. Unmapped character + ordinals (ones which cause a \exception{LookupError}) are left + untouched and are copied as-is. +\end{cfuncdesc} + +% --- MBCS codecs for Windows -------------------------------------------- + +These are the MBCS codec APIs. They are currently only available on +Windows and use the Win32 MBCS converters to implement the +conversions. Note that MBCS (or DBCS) is a class of encodings, not +just one. The target encoding is defined by the user settings on the +machine running the codec. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s, + Py_ssize_t size, + const char *errors} + Create a Unicode object by decoding \var{size} bytes of the MBCS + encoded string \var{s}. Return \NULL{} if an exception was + raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCSStateful}{const char *s, + int size, + const char *errors, + int *consumed} + If \var{consumed} is \NULL{}, behave like + \cfunction{PyUnicode_DecodeMBCS()}. If \var{consumed} is not \NULL{}, + \cfunction{PyUnicode_DecodeMBCSStateful()} will not decode trailing lead + byte and the number of bytes that have been decoded will be stored in + \var{consumed}. + \versionadded{2.5} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s, + Py_ssize_t size, + const char *errors} + Encode the \ctype{Py_UNICODE} buffer of the given size using MBCS + and return a Python string object. Return \NULL{} if an exception + was raised by the codec. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode} + Encode a Unicode objects using MBCS and return the result as + Python string object. Error handling is ``strict''. Return + \NULL{} if an exception was raised by the codec. +\end{cfuncdesc} + +% --- Methods & Slots ---------------------------------------------------- + +\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}} + +The following APIs are capable of handling Unicode objects and strings +on input (we refer to them as strings in the descriptions) and return +Unicode objects or integers as appropriate. + +They all return \NULL{} or \code{-1} if an exception occurs. + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left, + PyObject *right} + Concat two strings giving a new Unicode string. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s, + PyObject *sep, + Py_ssize_t maxsplit} + Split a string giving a list of Unicode strings. If sep is \NULL{}, + splitting will be done at all whitespace substrings. Otherwise, + splits occur at the given separator. At most \var{maxsplit} splits + will be done. If negative, no limit is set. Separators are not + included in the resulting list. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s, + int keepend} + Split a Unicode string at line breaks, returning a list of Unicode + strings. CRLF is considered to be one line break. If \var{keepend} + is 0, the Line break characters are not included in the resulting + strings. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str, + PyObject *table, + const char *errors} + Translate a string by applying a character mapping table to it and + return the resulting Unicode object. + + The mapping table must map Unicode ordinal integers to Unicode + ordinal integers or None (causing deletion of the character). + + Mapping tables need only provide the \method{__getitem__()} + interface; dictionaries and sequences work well. Unmapped character + ordinals (ones which cause a \exception{LookupError}) are left + untouched and are copied as-is. + + \var{errors} has the usual meaning for codecs. It may be \NULL{} + which indicates to use the default error handling. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator, + PyObject *seq} + Join a sequence of strings using the given separator and return the + resulting Unicode string. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyUnicode_Tailmatch}{PyObject *str, + PyObject *substr, + Py_ssize_t start, + Py_ssize_t end, + int direction} + Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at + the given tail end (\var{direction} == -1 means to do a prefix + match, \var{direction} == 1 a suffix match), 0 otherwise. + Return \code{-1} if an error occurred. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Find}{PyObject *str, + PyObject *substr, + Py_ssize_t start, + Py_ssize_t end, + int direction} + Return the first position of \var{substr} in + \var{str}[\var{start}:\var{end}] using the given \var{direction} + (\var{direction} == 1 means to do a forward search, + \var{direction} == -1 a backward search). The return value is the + index of the first match; a value of \code{-1} indicates that no + match was found, and \code{-2} indicates that an error occurred and + an exception has been set. +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Count}{PyObject *str, + PyObject *substr, + Py_ssize_t start, + Py_ssize_t end} + Return the number of non-overlapping occurrences of \var{substr} in + \code{\var{str}[\var{start}:\var{end}]}. Return \code{-1} if an + error occurred. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str, + PyObject *substr, + PyObject *replstr, + Py_ssize_t maxcount} + Replace at most \var{maxcount} occurrences of \var{substr} in + \var{str} with \var{replstr} and return the resulting Unicode object. + \var{maxcount} == -1 means replace all occurrences. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left, PyObject *right} + Compare two strings and return -1, 0, 1 for less than, equal, and + greater than, respectively. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyUnicode_RichCompare}{PyObject *left, + PyObject *right, + int op} + + Rich compare two unicode strings and return one of the following: + \begin{itemize} + \item \code{NULL} in case an exception was raised + \item \constant{Py_True} or \constant{Py_False} for successful comparisons + \item \constant{Py_NotImplemented} in case the type combination is unknown + \end{itemize} + + Note that \constant{Py_EQ} and \constant{Py_NE} comparisons can cause a + \exception{UnicodeWarning} in case the conversion of the arguments to + Unicode fails with a \exception{UnicodeDecodeError}. + + Possible values for \var{op} are + \constant{Py_GT}, \constant{Py_GE}, \constant{Py_EQ}, + \constant{Py_NE}, \constant{Py_LT}, and \constant{Py_LE}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format, + PyObject *args} + Return a new string object from \var{format} and \var{args}; this + is analogous to \code{\var{format} \%\ \var{args}}. The + \var{args} argument must be a tuple. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container, + PyObject *element} + Check whether \var{element} is contained in \var{container} and + return true or false accordingly. + + \var{element} has to coerce to a one element Unicode + string. \code{-1} is returned if there was an error. +\end{cfuncdesc} + + +\subsection{Buffer Objects \label{bufferObjects}} +\sectionauthor{Greg Stein}{gstein@lyra.org} + +\obindex{buffer} +Python objects implemented in C can export a group of functions called +the ``buffer\index{buffer interface} interface.'' These functions can +be used by an object to expose its data in a raw, byte-oriented +format. Clients of the object can use the buffer interface to access +the object data directly, without needing to copy it first. + +Two examples of objects that support +the buffer interface are strings and arrays. The string object exposes +the character contents in the buffer interface's byte-oriented +form. An array can also expose its contents, but it should be noted +that array elements may be multi-byte values. + +An example user of the buffer interface is the file object's +\method{write()} method. Any object that can export a series of bytes +through the buffer interface can be written to a file. There are a +number of format codes to \cfunction{PyArg_ParseTuple()} that operate +against an object's buffer interface, returning data from the target +object. + +More information on the buffer interface is provided in the section +``Buffer Object Structures'' (section~\ref{buffer-structs}), under +the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}. + +A ``buffer object'' is defined in the \file{bufferobject.h} header +(included by \file{Python.h}). These objects look very similar to +string objects at the Python programming level: they support slicing, +indexing, concatenation, and some other standard string +operations. However, their data can come from one of two sources: from +a block of memory, or from another object which exports the buffer +interface. + +Buffer objects are useful as a way to expose the data from another +object's buffer interface to the Python programmer. They can also be +used as a zero-copy slicing mechanism. Using their ability to +reference a block of memory, it is possible to expose any data to the +Python programmer quite easily. The memory could be a large, constant +array in a C extension, it could be a raw block of memory for +manipulation before passing to an operating system library, or it +could be used to pass around structured data in its native, in-memory +format. + +\begin{ctypedesc}{PyBufferObject} + This subtype of \ctype{PyObject} represents a buffer object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyBuffer_Type} + The instance of \ctype{PyTypeObject} which represents the Python + buffer type; it is the same object as \code{buffer} and + \code{types.BufferType} in the Python layer. + \withsubitem{(in module types)}{\ttindex{BufferType}}. +\end{cvardesc} + +\begin{cvardesc}{int}{Py_END_OF_BUFFER} + This constant may be passed as the \var{size} parameter to + \cfunction{PyBuffer_FromObject()} or + \cfunction{PyBuffer_FromReadWriteObject()}. It indicates that the + new \ctype{PyBufferObject} should refer to \var{base} object from + the specified \var{offset} to the end of its exported buffer. Using + this enables the caller to avoid querying the \var{base} object for + its length. +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p} + Return true if the argument has type \cdata{PyBuffer_Type}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base, + Py_ssize_t offset, Py_ssize_t size} + Return a new read-only buffer object. This raises + \exception{TypeError} if \var{base} doesn't support the read-only + buffer protocol or doesn't provide exactly one buffer segment, or it + raises \exception{ValueError} if \var{offset} is less than zero. The + buffer will hold a reference to the \var{base} object, and the + buffer's contents will refer to the \var{base} object's buffer + interface, starting as position \var{offset} and extending for + \var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then + the new buffer's contents extend to the length of the \var{base} + object's exported buffer data. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base, + Py_ssize_t offset, + Py_ssize_t size} + Return a new writable buffer object. Parameters and exceptions are + similar to those for \cfunction{PyBuffer_FromObject()}. If the + \var{base} object does not export the writeable buffer protocol, + then \exception{TypeError} is raised. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, Py_ssize_t size} + Return a new read-only buffer object that reads from a specified + location in memory, with a specified size. The caller is + responsible for ensuring that the memory buffer, passed in as + \var{ptr}, is not deallocated while the returned buffer object + exists. Raises \exception{ValueError} if \var{size} is less than + zero. Note that \constant{Py_END_OF_BUFFER} may \emph{not} be + passed for the \var{size} parameter; \exception{ValueError} will be + raised in that case. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, Py_ssize_t size} + Similar to \cfunction{PyBuffer_FromMemory()}, but the returned + buffer is writable. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{Py_ssize_t size} + Return a new writable buffer object that maintains its own memory + buffer of \var{size} bytes. \exception{ValueError} is returned if + \var{size} is not zero or positive. Note that the memory buffer (as + returned by \cfunction{PyObject_AsWriteBuffer()}) is not specifically + aligned. +\end{cfuncdesc} + + +\subsection{Tuple Objects \label{tupleObjects}} + +\obindex{tuple} +\begin{ctypedesc}{PyTupleObject} + This subtype of \ctype{PyObject} represents a Python tuple object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyTuple_Type} + This instance of \ctype{PyTypeObject} represents the Python tuple + type; it is the same object as \code{tuple} and \code{types.TupleType} + in the Python layer.\withsubitem{(in module types)}{\ttindex{TupleType}}. +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p} + Return true if \var{p} is a tuple object or an instance of a subtype + of the tuple type. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTuple_CheckExact}{PyObject *p} + Return true if \var{p} is a tuple object, but not an instance of a + subtype of the tuple type. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyTuple_New}{Py_ssize_t len} + Return a new tuple object of size \var{len}, or \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyTuple_Pack}{Py_ssize_t n, \moreargs} + Return a new tuple object of size \var{n}, or \NULL{} on failure. + The tuple values are initialized to the subsequent \var{n} C arguments + pointing to Python objects. \samp{PyTuple_Pack(2, \var{a}, \var{b})} + is equivalent to \samp{Py_BuildValue("(OO)", \var{a}, \var{b})}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTuple_Size}{PyObject *p} + Take a pointer to a tuple object, and return the size of that + tuple. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTuple_GET_SIZE}{PyObject *p} + Return the size of the tuple \var{p}, which must be non-\NULL{} and + point to a tuple; no error checking is performed. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyObject *p, Py_ssize_t pos} + Return the object at position \var{pos} in the tuple pointed to by + \var{p}. If \var{pos} is out of bounds, return \NULL{} and sets an + \exception{IndexError} exception. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyObject *p, Py_ssize_t pos} + Like \cfunction{PyTuple_GetItem()}, but does no checking of its + arguments. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyObject *p, + Py_ssize_t low, Py_ssize_t high} + Take a slice of the tuple pointed to by \var{p} from \var{low} to + \var{high} and return it as a new tuple. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p, + Py_ssize_t pos, PyObject *o} + Insert a reference to object \var{o} at position \var{pos} of the + tuple pointed to by \var{p}. Return \code{0} on success. + \note{This function ``steals'' a reference to \var{o}.} +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p, + Py_ssize_t pos, PyObject *o} + Like \cfunction{PyTuple_SetItem()}, but does no error checking, and + should \emph{only} be used to fill in brand new tuples. \note{This + function ``steals'' a reference to \var{o}.} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyObject **p, Py_ssize_t newsize} + Can be used to resize a tuple. \var{newsize} will be the new length + of the tuple. Because tuples are \emph{supposed} to be immutable, + this should only be used if there is only one reference to the + object. Do \emph{not} use this if the tuple may already be known to + some other part of the code. The tuple will always grow or shrink + at the end. Think of this as destroying the old tuple and creating + a new one, only more efficiently. Returns \code{0} on success. + Client code should never assume that the resulting value of + \code{*\var{p}} will be the same as before calling this function. + If the object referenced by \code{*\var{p}} is replaced, the + original \code{*\var{p}} is destroyed. On failure, returns + \code{-1} and sets \code{*\var{p}} to \NULL{}, and raises + \exception{MemoryError} or + \exception{SystemError}. + \versionchanged[Removed unused third parameter, \var{last_is_sticky}]{2.2} +\end{cfuncdesc} + + +\subsection{List Objects \label{listObjects}} + +\obindex{list} +\begin{ctypedesc}{PyListObject} + This subtype of \ctype{PyObject} represents a Python list object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyList_Type} + This instance of \ctype{PyTypeObject} represents the Python list + type. This is the same object as \code{list} and \code{types.ListType} + in the Python layer.\withsubitem{(in module types)}{\ttindex{ListType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p} + Return true if \var{p} is a list object or an instance of a + subtype of the list type. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_CheckExact}{PyObject *p} + Return true if \var{p} is a list object, but not an instance of a + subtype of the list type. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyList_New}{Py_ssize_t len} + Return a new list of length \var{len} on success, or \NULL{} on + failure. + \note{If \var{length} is greater than zero, the returned list object's + items are set to \code{NULL}. Thus you cannot use abstract + API functions such as \cfunction{PySequence_SetItem()} + or expose the object to Python code before setting all items to a + real object with \cfunction{PyList_SetItem()}.} +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyList_Size}{PyObject *list} + Return the length of the list object in \var{list}; this is + equivalent to \samp{len(\var{list})} on a list object. + \bifuncindex{len} +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyList_GET_SIZE}{PyObject *list} + Macro form of \cfunction{PyList_Size()} without error checking. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, Py_ssize_t index} + Return the object at position \var{pos} in the list pointed to by + \var{p}. The position must be positive, indexing from the end of the + list is not supported. If \var{pos} is out of bounds, return \NULL{} + and set an \exception{IndexError} exception. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, Py_ssize_t i} + Macro form of \cfunction{PyList_GetItem()} without error checking. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, Py_ssize_t index, + PyObject *item} + Set the item at index \var{index} in list to \var{item}. Return + \code{0} on success or \code{-1} on failure. \note{This function + ``steals'' a reference to \var{item} and discards a reference to an + item already in the list at the affected position.} +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyList_SET_ITEM}{PyObject *list, Py_ssize_t i, + PyObject *o} + Macro form of \cfunction{PyList_SetItem()} without error checking. + This is normally only used to fill in new lists where there is no + previous content. + \note{This function ``steals'' a reference to \var{item}, and, + unlike \cfunction{PyList_SetItem()}, does \emph{not} discard a + reference to any item that it being replaced; any reference in + \var{list} at position \var{i} will be leaked.} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, Py_ssize_t index, + PyObject *item} + Insert the item \var{item} into list \var{list} in front of index + \var{index}. Return \code{0} if successful; return \code{-1} and + set an exception if unsuccessful. Analogous to + \code{\var{list}.insert(\var{index}, \var{item})}. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item} + Append the object \var{item} at the end of list \var{list}. + Return \code{0} if successful; return \code{-1} and set an + exception if unsuccessful. Analogous to + \code{\var{list}.append(\var{item})}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list, + Py_ssize_t low, Py_ssize_t high} + Return a list of the objects in \var{list} containing the objects + \emph{between} \var{low} and \var{high}. Return \NULL{} and set + an exception if unsuccessful. + Analogous to \code{\var{list}[\var{low}:\var{high}]}. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list, + Py_ssize_t low, Py_ssize_t high, + PyObject *itemlist} + Set the slice of \var{list} between \var{low} and \var{high} to the + contents of \var{itemlist}. Analogous to + \code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}. + The \var{itemlist} may be \NULL{}, indicating the assignment + of an empty list (slice deletion). + Return \code{0} on success, \code{-1} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list} + Sort the items of \var{list} in place. Return \code{0} on + success, \code{-1} on failure. This is equivalent to + \samp{\var{list}.sort()}. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list} + Reverse the items of \var{list} in place. Return \code{0} on + success, \code{-1} on failure. This is the equivalent of + \samp{\var{list}.reverse()}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list} + Return a new tuple object containing the contents of \var{list}; + equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple} +\end{cfuncdesc} + + +\section{Mapping Objects \label{mapObjects}} + +\obindex{mapping} + + +\subsection{Dictionary Objects \label{dictObjects}} + +\obindex{dictionary} +\begin{ctypedesc}{PyDictObject} + This subtype of \ctype{PyObject} represents a Python dictionary + object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyDict_Type} + This instance of \ctype{PyTypeObject} represents the Python + dictionary type. This is exposed to Python programs as + \code{dict} and \code{types.DictType}. + \withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p} + Return true if \var{p} is a dict object or an instance of a + subtype of the dict type. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_CheckExact}{PyObject *p} + Return true if \var{p} is a dict object, but not an instance of a + subtype of the dict type. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_New}{} + Return a new empty dictionary, or \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDictProxy_New}{PyObject *dict} + Return a proxy object for a mapping which enforces read-only + behavior. This is normally used to create a proxy to prevent + modification of the dictionary for non-dynamic class types. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p} + Empty an existing dictionary of all key-value pairs. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_Contains}{PyObject *p, PyObject *key} + Determine if dictionary \var{p} contains \var{key}. If an item + in \var{p} is matches \var{key}, return \code{1}, otherwise return + \code{0}. On error, return \code{-1}. This is equivalent to the + Python expression \samp{\var{key} in \var{p}}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p} + Return a new dictionary that contains the same key-value pairs as + \var{p}. + \versionadded{1.6} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key, + PyObject *val} + Insert \var{value} into the dictionary \var{p} with a key of + \var{key}. \var{key} must be hashable; if it isn't, + \exception{TypeError} will be raised. + Return \code{0} on success or \code{-1} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyObject *p, + const char *key, + PyObject *val} + Insert \var{value} into the dictionary \var{p} using \var{key} as a + key. \var{key} should be a \ctype{char*}. The key object is created + using \code{PyString_FromString(\var{key})}. Return \code{0} on + success or \code{-1} on failure. + \ttindex{PyString_FromString()} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key} + Remove the entry in dictionary \var{p} with key \var{key}. + \var{key} must be hashable; if it isn't, \exception{TypeError} is + raised. Return \code{0} on success or \code{-1} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key} + Remove the entry in dictionary \var{p} which has a key specified by + the string \var{key}. Return \code{0} on success or \code{-1} on + failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key} + Return the object from dictionary \var{p} which has a key + \var{key}. Return \NULL{} if the key \var{key} is not present, but + \emph{without} setting an exception. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, const char *key} + This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is + specified as a \ctype{char*}, rather than a \ctype{PyObject*}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p} + Return a \ctype{PyListObject} containing all the items from the + dictionary, as in the dictionary method \method{items()} (see the + \citetitle[../lib/lib.html]{Python Library Reference}). +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p} + Return a \ctype{PyListObject} containing all the keys from the + dictionary, as in the dictionary method \method{keys()} (see the + \citetitle[../lib/lib.html]{Python Library Reference}). +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p} + Return a \ctype{PyListObject} containing all the values from the + dictionary \var{p}, as in the dictionary method \method{values()} + (see the \citetitle[../lib/lib.html]{Python Library Reference}). +\end{cfuncdesc} + +\begin{cfuncdesc}{Py_ssize_t}{PyDict_Size}{PyObject *p} + Return the number of items in the dictionary. This is equivalent + to \samp{len(\var{p})} on a dictionary.\bifuncindex{len} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_Next}{PyObject *p, Py_ssize_t *ppos, + PyObject **pkey, PyObject **pvalue} + Iterate over all key-value pairs in the dictionary \var{p}. The + \ctype{int} referred to by \var{ppos} must be initialized to + \code{0} prior to the first call to this function to start the + iteration; the function returns true for each pair in the + dictionary, and false once all pairs have been reported. The + parameters \var{pkey} and \var{pvalue} should either point to + \ctype{PyObject*} variables that will be filled in with each key and + value, respectively, or may be \NULL{}. Any references returned through + them are borrowed. \var{ppos} should not be altered during iteration. + Its value represents offsets within the internal dictionary structure, + and since the structure is sparse, the offsets are not consecutive. + + For example: + +\begin{verbatim} +PyObject *key, *value; +Py_ssize_t pos = 0; + +while (PyDict_Next(self->dict, &pos, &key, &value)) { + /* do something interesting with the values... */ + ... +} +\end{verbatim} + + The dictionary \var{p} should not be mutated during iteration. It + is safe (since Python 2.1) to modify the values of the keys as you + iterate over the dictionary, but only so long as the set of keys + does not change. For example: + +\begin{verbatim} +PyObject *key, *value; +Py_ssize_t pos = 0; + +while (PyDict_Next(self->dict, &pos, &key, &value)) { + int i = PyInt_AS_LONG(value) + 1; + PyObject *o = PyInt_FromLong(i); + if (o == NULL) + return -1; + if (PyDict_SetItem(self->dict, key, o) < 0) { + Py_DECREF(o); + return -1; + } + Py_DECREF(o); +} +\end{verbatim} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_Merge}{PyObject *a, PyObject *b, int override} + Iterate over mapping object \var{b} adding key-value pairs to dictionary + \var{a}. + \var{b} may be a dictionary, or any object supporting + \function{PyMapping_Keys()} and \function{PyObject_GetItem()}. + If \var{override} is true, existing pairs in \var{a} will + be replaced if a matching key is found in \var{b}, otherwise pairs + will only be added if there is not a matching key in \var{a}. + Return \code{0} on success or \code{-1} if an exception was + raised. +\versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_Update}{PyObject *a, PyObject *b} + This is the same as \code{PyDict_Merge(\var{a}, \var{b}, 1)} in C, + or \code{\var{a}.update(\var{b})} in Python. Return \code{0} on + success or \code{-1} if an exception was raised. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDict_MergeFromSeq2}{PyObject *a, PyObject *seq2, + int override} + Update or merge into dictionary \var{a}, from the key-value pairs in + \var{seq2}. \var{seq2} must be an iterable object producing + iterable objects of length 2, viewed as key-value pairs. In case of + duplicate keys, the last wins if \var{override} is true, else the + first wins. + Return \code{0} on success or \code{-1} if an exception + was raised. + Equivalent Python (except for the return value): + +\begin{verbatim} +def PyDict_MergeFromSeq2(a, seq2, override): + for key, value in seq2: + if override or key not in a: + a[key] = value +\end{verbatim} + + \versionadded{2.2} +\end{cfuncdesc} + + +\section{Other Objects \label{otherObjects}} + +\subsection{File Objects \label{fileObjects}} + +\obindex{file} +Python's built-in file objects are implemented entirely on the +\ctype{FILE*} support from the C standard library. This is an +implementation detail and may change in future releases of Python. + +\begin{ctypedesc}{PyFileObject} + This subtype of \ctype{PyObject} represents a Python file object. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyFile_Type} + This instance of \ctype{PyTypeObject} represents the Python file + type. This is exposed to Python programs as \code{file} and + \code{types.FileType}. + \withsubitem{(in module types)}{\ttindex{FileType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p} + Return true if its argument is a \ctype{PyFileObject} or a subtype + of \ctype{PyFileObject}. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFile_CheckExact}{PyObject *p} + Return true if its argument is a \ctype{PyFileObject}, but not a + subtype of \ctype{PyFileObject}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode} + On success, return a new file object that is opened on the file + given by \var{filename}, with a file mode given by \var{mode}, where + \var{mode} has the same semantics as the standard C routine + \cfunction{fopen()}\ttindex{fopen()}. On failure, return \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp, + char *name, char *mode, + int (*close)(FILE*)} + Create a new \ctype{PyFileObject} from the already-open standard C + file pointer, \var{fp}. The function \var{close} will be called + when the file should be closed. Return \NULL{} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyObject *p} + Return the file object associated with \var{p} as a \ctype{FILE*}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n} + Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this + function reads one line from the object \var{p}. \var{p} may be a + file object or any object with a \method{readline()} method. If + \var{n} is \code{0}, exactly one line is read, regardless of the + length of the line. If \var{n} is greater than \code{0}, no more + than \var{n} bytes will be read from the file; a partial line can be + returned. In both cases, an empty string is returned if the end of + the file is reached immediately. If \var{n} is less than \code{0}, + however, one line is read regardless of length, but + \exception{EOFError} is raised if the end of the file is reached + immediately. + \withsubitem{(built-in exception)}{\ttindex{EOFError}} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p} + Return the name of the file specified by \var{p} as a string + object. +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n} + Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()} + only. This should only be called immediately after file object + creation. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFile_Encoding}{PyFileObject *p, char *enc} + Set the file's encoding for Unicode output to \var{enc}. Return + 1 on success and 0 on failure. + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag} + This function exists for internal use by the interpreter. Set the + \member{softspace} attribute of \var{p} to \var{newflag} and + \withsubitem{(file attribute)}{\ttindex{softspace}}return the + previous value. \var{p} does not have to be a file object for this + function to work properly; any object is supported (thought its only + interesting if the \member{softspace} attribute can be set). This + function clears any errors, and will return \code{0} as the previous + value if the attribute either does not exist or if there were errors + in retrieving it. There is no way to detect errors from this + function, but doing so should not be needed. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyObject *p, + int flags} + Write object \var{obj} to file object \var{p}. The only supported + flag for \var{flags} is + \constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW}; if given, the + \function{str()} of the object is written instead of the + \function{repr()}. Return \code{0} on success or \code{-1} on + failure; the appropriate exception will be set. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFile_WriteString}{const char *s, PyObject *p} + Write string \var{s} to file object \var{p}. Return \code{0} on + success or \code{-1} on failure; the appropriate exception will be + set. +\end{cfuncdesc} + + +\subsection{Instance Objects \label{instanceObjects}} + +\obindex{instance} +There are very few functions specific to instance objects. + +\begin{cvardesc}{PyTypeObject}{PyInstance_Type} + Type object for class instances. +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyInstance_Check}{PyObject *obj} + Return true if \var{obj} is an instance. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyInstance_New}{PyObject *class, + PyObject *arg, + PyObject *kw} + Create a new instance of a specific class. The parameters \var{arg} + and \var{kw} are used as the positional and keyword parameters to + the object's constructor. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyInstance_NewRaw}{PyObject *class, + PyObject *dict} + Create a new instance of a specific class without calling its + constructor. \var{class} is the class of new object. The + \var{dict} parameter will be used as the object's \member{__dict__}; + if \NULL{}, a new dictionary will be created for the instance. +\end{cfuncdesc} + + +\subsection{Function Objects \label{function-objects}} + +\obindex{function} +There are a few functions specific to Python functions. + +\begin{ctypedesc}{PyFunctionObject} + The C structure used for functions. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyFunction_Type} + This is an instance of \ctype{PyTypeObject} and represents the + Python function type. It is exposed to Python programmers as + \code{types.FunctionType}. + \withsubitem{(in module types)}{\ttindex{MethodType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyFunction_Check}{PyObject *o} + Return true if \var{o} is a function object (has type + \cdata{PyFunction_Type}). The parameter must not be \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFunction_New}{PyObject *code, + PyObject *globals} + Return a new function object associated with the code object + \var{code}. \var{globals} must be a dictionary with the global + variables accessible to the function. + + The function's docstring, name and \var{__module__} are retrieved + from the code object, the argument defaults and closure are set to + \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFunction_GetCode}{PyObject *op} + Return the code object associated with the function object \var{op}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFunction_GetGlobals}{PyObject *op} + Return the globals dictionary associated with the function object + \var{op}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFunction_GetModule}{PyObject *op} + Return the \var{__module__} attribute of the function object \var{op}. + This is normally a string containing the module name, but can be set + to any other object by Python code. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFunction_GetDefaults}{PyObject *op} + Return the argument default values of the function object \var{op}. + This can be a tuple of arguments or \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFunction_SetDefaults}{PyObject *op, + PyObject *defaults} + Set the argument default values for the function object \var{op}. + \var{defaults} must be \var{Py_None} or a tuple. + + Raises \exception{SystemError} and returns \code{-1} on failure. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFunction_GetClosure}{PyObject *op} + Return the closure associated with the function object \var{op}. + This can be \NULL{} or a tuple of cell objects. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFunction_SetClosure}{PyObject *op, + PyObject *closure} + Set the closure associated with the function object \var{op}. + \var{closure} must be \var{Py_None} or a tuple of cell objects. + + Raises \exception{SystemError} and returns \code{-1} on failure. +\end{cfuncdesc} + + +\subsection{Method Objects \label{method-objects}} + +\obindex{method} +There are some useful functions that are useful for working with +method objects. + +\begin{cvardesc}{PyTypeObject}{PyMethod_Type} + This instance of \ctype{PyTypeObject} represents the Python method + type. This is exposed to Python programs as \code{types.MethodType}. + \withsubitem{(in module types)}{\ttindex{MethodType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyMethod_Check}{PyObject *o} + Return true if \var{o} is a method object (has type + \cdata{PyMethod_Type}). The parameter must not be \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_New}{PyObject *func, + PyObject *self, PyObject *class} + Return a new method object, with \var{func} being any callable + object; this is the function that will be called when the method is + called. If this method should be bound to an instance, \var{self} + should be the instance and \var{class} should be the class of + \var{self}, otherwise \var{self} should be \NULL{} and \var{class} + should be the class which provides the unbound method.. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_Class}{PyObject *meth} + Return the class object from which the method \var{meth} was + created; if this was created from an instance, it will be the class + of the instance. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_GET_CLASS}{PyObject *meth} + Macro version of \cfunction{PyMethod_Class()} which avoids error + checking. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_Function}{PyObject *meth} + Return the function object associated with the method \var{meth}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_GET_FUNCTION}{PyObject *meth} + Macro version of \cfunction{PyMethod_Function()} which avoids error + checking. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_Self}{PyObject *meth} + Return the instance associated with the method \var{meth} if it is + bound, otherwise return \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyMethod_GET_SELF}{PyObject *meth} + Macro version of \cfunction{PyMethod_Self()} which avoids error + checking. +\end{cfuncdesc} + + +\subsection{Module Objects \label{moduleObjects}} + +\obindex{module} +There are only a few functions special to module objects. + +\begin{cvardesc}{PyTypeObject}{PyModule_Type} + This instance of \ctype{PyTypeObject} represents the Python module + type. This is exposed to Python programs as + \code{types.ModuleType}. + \withsubitem{(in module types)}{\ttindex{ModuleType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p} + Return true if \var{p} is a module object, or a subtype of a module + object. + \versionchanged[Allowed subtypes to be accepted]{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyModule_CheckExact}{PyObject *p} + Return true if \var{p} is a module object, but not a subtype of + \cdata{PyModule_Type}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyModule_New}{const char *name} + Return a new module object with the \member{__name__} attribute set + to \var{name}. Only the module's \member{__doc__} and + \member{__name__} attributes are filled in; the caller is + responsible for providing a \member{__file__} attribute. + \withsubitem{(module attribute)}{ + \ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module} + Return the dictionary object that implements \var{module}'s + namespace; this object is the same as the \member{__dict__} + attribute of the module object. This function never fails. + \withsubitem{(module attribute)}{\ttindex{__dict__}} + It is recommended extensions use other \cfunction{PyModule_*()} + and \cfunction{PyObject_*()} functions rather than directly + manipulate a module's \member{__dict__}. +\end{cfuncdesc} + +\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module} + Return \var{module}'s \member{__name__} value. If the module does + not provide one, or if it is not a string, \exception{SystemError} + is raised and \NULL{} is returned. + \withsubitem{(module attribute)}{\ttindex{__name__}} + \withsubitem{(built-in exception)}{\ttindex{SystemError}} +\end{cfuncdesc} + +\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module} + Return the name of the file from which \var{module} was loaded using + \var{module}'s \member{__file__} attribute. If this is not defined, + or if it is not a string, raise \exception{SystemError} and return + \NULL{}. + \withsubitem{(module attribute)}{\ttindex{__file__}} + \withsubitem{(built-in exception)}{\ttindex{SystemError}} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyModule_AddObject}{PyObject *module, + const char *name, PyObject *value} + Add an object to \var{module} as \var{name}. This is a convenience + function which can be used from the module's initialization + function. This steals a reference to \var{value}. Return + \code{-1} on error, \code{0} on success. + \versionadded{2.0} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyModule_AddIntConstant}{PyObject *module, + const char *name, long value} + Add an integer constant to \var{module} as \var{name}. This + convenience function can be used from the module's initialization + function. Return \code{-1} on error, \code{0} on success. + \versionadded{2.0} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyModule_AddStringConstant}{PyObject *module, + const char *name, const char *value} + Add a string constant to \var{module} as \var{name}. This + convenience function can be used from the module's initialization + function. The string \var{value} must be null-terminated. Return + \code{-1} on error, \code{0} on success. + \versionadded{2.0} +\end{cfuncdesc} + + +\subsection{Iterator Objects \label{iterator-objects}} + +Python provides two general-purpose iterator objects. The first, a +sequence iterator, works with an arbitrary sequence supporting the +\method{__getitem__()} method. The second works with a callable +object and a sentinel value, calling the callable for each item in the +sequence, and ending the iteration when the sentinel value is +returned. + +\begin{cvardesc}{PyTypeObject}{PySeqIter_Type} + Type object for iterator objects returned by + \cfunction{PySeqIter_New()} and the one-argument form of the + \function{iter()} built-in function for built-in sequence types. + \versionadded{2.2} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PySeqIter_Check}{op} + Return true if the type of \var{op} is \cdata{PySeqIter_Type}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PySeqIter_New}{PyObject *seq} + Return an iterator that works with a general sequence object, + \var{seq}. The iteration ends when the sequence raises + \exception{IndexError} for the subscripting operation. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cvardesc}{PyTypeObject}{PyCallIter_Type} + Type object for iterator objects returned by + \cfunction{PyCallIter_New()} and the two-argument form of the + \function{iter()} built-in function. + \versionadded{2.2} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyCallIter_Check}{op} + Return true if the type of \var{op} is \cdata{PyCallIter_Type}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyCallIter_New}{PyObject *callable, + PyObject *sentinel} + Return a new iterator. The first parameter, \var{callable}, can be + any Python callable object that can be called with no parameters; + each call to it should return the next item in the iteration. When + \var{callable} returns a value equal to \var{sentinel}, the + iteration will be terminated. + \versionadded{2.2} +\end{cfuncdesc} + + +\subsection{Descriptor Objects \label{descriptor-objects}} + +``Descriptors'' are objects that describe some attribute of an object. +They are found in the dictionary of type objects. + +\begin{cvardesc}{PyTypeObject}{PyProperty_Type} + The type object for the built-in descriptor types. + \versionadded{2.2} +\end{cvardesc} + +\begin{cfuncdesc}{PyObject*}{PyDescr_NewGetSet}{PyTypeObject *type, + struct PyGetSetDef *getset} + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDescr_NewMember}{PyTypeObject *type, + struct PyMemberDef *meth} + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDescr_NewMethod}{PyTypeObject *type, + struct PyMethodDef *meth} + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDescr_NewWrapper}{PyTypeObject *type, + struct wrapperbase *wrapper, + void *wrapped} + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDescr_NewClassMethod}{PyTypeObject *type, + PyMethodDef *method} + \versionadded{2.3} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDescr_IsData}{PyObject *descr} + Return true if the descriptor objects \var{descr} describes a data + attribute, or false if it describes a method. \var{descr} must be a + descriptor object; there is no error checking. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyWrapper_New}{PyObject *, PyObject *} + \versionadded{2.2} +\end{cfuncdesc} + + +\subsection{Slice Objects \label{slice-objects}} + +\begin{cvardesc}{PyTypeObject}{PySlice_Type} + The type object for slice objects. This is the same as + \code{slice} and \code{types.SliceType}. + \withsubitem{(in module types)}{\ttindex{SliceType}} +\end{cvardesc} + +\begin{cfuncdesc}{int}{PySlice_Check}{PyObject *ob} + Return true if \var{ob} is a slice object; \var{ob} must not be + \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PySlice_New}{PyObject *start, PyObject *stop, + PyObject *step} + Return a new slice object with the given values. The \var{start}, + \var{stop}, and \var{step} parameters are used as the values of the + slice object attributes of the same names. Any of the values may be + \NULL{}, in which case the \code{None} will be used for the + corresponding attribute. Return \NULL{} if the new object could + not be allocated. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PySlice_GetIndices}{PySliceObject *slice, Py_ssize_t length, + Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step} +Retrieve the start, stop and step indices from the slice object +\var{slice}, assuming a sequence of length \var{length}. Treats +indices greater than \var{length} as errors. + +Returns 0 on success and -1 on error with no exception set (unless one +of the indices was not \constant{None} and failed to be converted to +an integer, in which case -1 is returned with an exception set). + +You probably do not want to use this function. If you want to use +slice objects in versions of Python prior to 2.3, you would probably +do well to incorporate the source of \cfunction{PySlice_GetIndicesEx}, +suitably renamed, in the source of your extension. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PySlice_GetIndicesEx}{PySliceObject *slice, Py_ssize_t length, + Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step, + Py_ssize_t *slicelength} +Usable replacement for \cfunction{PySlice_GetIndices}. Retrieve the +start, stop, and step indices from the slice object \var{slice} +assuming a sequence of length \var{length}, and store the length of +the slice in \var{slicelength}. Out of bounds indices are clipped in +a manner consistent with the handling of normal slices. + +Returns 0 on success and -1 on error with exception set. + +\versionadded{2.3} +\end{cfuncdesc} + + +\subsection{Weak Reference Objects \label{weakref-objects}} + +Python supports \emph{weak references} as first-class objects. There +are two specific object types which directly implement weak +references. The first is a simple reference object, and the second +acts as a proxy for the original object as much as it can. + +\begin{cfuncdesc}{int}{PyWeakref_Check}{ob} + Return true if \var{ob} is either a reference or proxy object. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyWeakref_CheckRef}{ob} + Return true if \var{ob} is a reference object. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyWeakref_CheckProxy}{ob} + Return true if \var{ob} is a proxy object. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyWeakref_NewRef}{PyObject *ob, + PyObject *callback} + Return a weak reference object for the object \var{ob}. This will + always return a new reference, but is not guaranteed to create a new + object; an existing reference object may be returned. The second + parameter, \var{callback}, can be a callable object that receives + notification when \var{ob} is garbage collected; it should accept a + single parameter, which will be the weak reference object itself. + \var{callback} may also be \code{None} or \NULL{}. If \var{ob} + is not a weakly-referencable object, or if \var{callback} is not + callable, \code{None}, or \NULL{}, this will return \NULL{} and + raise \exception{TypeError}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyWeakref_NewProxy}{PyObject *ob, + PyObject *callback} + Return a weak reference proxy object for the object \var{ob}. This + will always return a new reference, but is not guaranteed to create + a new object; an existing proxy object may be returned. The second + parameter, \var{callback}, can be a callable object that receives + notification when \var{ob} is garbage collected; it should accept a + single parameter, which will be the weak reference object itself. + \var{callback} may also be \code{None} or \NULL{}. If \var{ob} is not + a weakly-referencable object, or if \var{callback} is not callable, + \code{None}, or \NULL{}, this will return \NULL{} and raise + \exception{TypeError}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyWeakref_GetObject}{PyObject *ref} + Return the referenced object from a weak reference, \var{ref}. If + the referent is no longer live, returns \code{None}. + \versionadded{2.2} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyWeakref_GET_OBJECT}{PyObject *ref} + Similar to \cfunction{PyWeakref_GetObject()}, but implemented as a + macro that does no error checking. + \versionadded{2.2} +\end{cfuncdesc} + + +\subsection{CObjects \label{cObjects}} + +\obindex{CObject} +Refer to \emph{Extending and Embedding the Python Interpreter}, +section~1.12, ``Providing a C API for an Extension Module,'' for more +information on using these objects. + + +\begin{ctypedesc}{PyCObject} + This subtype of \ctype{PyObject} represents an opaque value, useful + for C extension modules who need to pass an opaque value (as a + \ctype{void*} pointer) through Python code to other C code. It is + often used to make a C function pointer defined in one module + available to other modules, so the regular import mechanism can be + used to access C APIs defined in dynamically loaded modules. +\end{ctypedesc} + +\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p} + Return true if its argument is a \ctype{PyCObject}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj, + void (*destr)(void *)} + Create a \ctype{PyCObject} from the \code{void *}\var{cobj}. The + \var{destr} function will be called when the object is reclaimed, + unless it is \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj, + void* desc, void (*destr)(void *, void *)} + Create a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The + \var{destr} function will be called when the object is reclaimed. + The \var{desc} argument can be used to pass extra callback data for + the destructor function. +\end{cfuncdesc} + +\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self} + Return the object \ctype{void *} that the \ctype{PyCObject} + \var{self} was created with. +\end{cfuncdesc} + +\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self} + Return the description \ctype{void *} that the \ctype{PyCObject} + \var{self} was created with. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyCObject_SetVoidPtr}{PyObject* self, void* cobj} + Set the void pointer inside \var{self} to \var{cobj}. + The \ctype{PyCObject} must not have an associated destructor. + Return true on success, false on failure. +\end{cfuncdesc} + + +\subsection{Cell Objects \label{cell-objects}} + +``Cell'' objects are used to implement variables referenced by +multiple scopes. For each such variable, a cell object is created to +store the value; the local variables of each stack frame that +references the value contains a reference to the cells from outer +scopes which also use that variable. When the value is accessed, the +value contained in the cell is used instead of the cell object +itself. This de-referencing of the cell object requires support from +the generated byte-code; these are not automatically de-referenced +when accessed. Cell objects are not likely to be useful elsewhere. + +\begin{ctypedesc}{PyCellObject} + The C structure used for cell objects. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyCell_Type} + The type object corresponding to cell objects. +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyCell_Check}{ob} + Return true if \var{ob} is a cell object; \var{ob} must not be + \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyCell_New}{PyObject *ob} + Create and return a new cell object containing the value \var{ob}. + The parameter may be \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyCell_Get}{PyObject *cell} + Return the contents of the cell \var{cell}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyCell_GET}{PyObject *cell} + Return the contents of the cell \var{cell}, but without checking + that \var{cell} is non-\NULL{} and a cell object. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyCell_Set}{PyObject *cell, PyObject *value} + Set the contents of the cell object \var{cell} to \var{value}. This + releases the reference to any current content of the cell. + \var{value} may be \NULL{}. \var{cell} must be non-\NULL{}; if it is + not a cell object, \code{-1} will be returned. On success, \code{0} + will be returned. +\end{cfuncdesc} + +\begin{cfuncdesc}{void}{PyCell_SET}{PyObject *cell, PyObject *value} + Sets the value of the cell object \var{cell} to \var{value}. No + reference counts are adjusted, and no checks are made for safety; + \var{cell} must be non-\NULL{} and must be a cell object. +\end{cfuncdesc} + + +\subsection{Generator Objects \label{gen-objects}} + +Generator objects are what Python uses to implement generator iterators. +They are normally created by iterating over a function that yields values, +rather than explicitly calling \cfunction{PyGen_New}. + +\begin{ctypedesc}{PyGenObject} + The C structure used for generator objects. +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PyGen_Type} + The type object corresponding to generator objects +\end{cvardesc} + +\begin{cfuncdesc}{int}{PyGen_Check}{ob} + Return true if \var{ob} is a generator object; \var{ob} must not be + \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyGen_CheckExact}{ob} + Return true if \var{ob}'s type is \var{PyGen_Type} + is a generator object; \var{ob} must not be + \NULL{}. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyGen_New}{PyFrameObject *frame} + Create and return a new generator object based on the \var{frame} object. + A reference to \var{frame} is stolen by this function. + The parameter must not be \NULL{}. +\end{cfuncdesc} + + +\subsection{DateTime Objects \label{datetime-objects}} + +Various date and time objects are supplied by the \module{datetime} +module. Before using any of these functions, the header file +\file{datetime.h} must be included in your source (note that this is +not included by \file{Python.h}), and the macro +\cfunction{PyDateTime_IMPORT} must be invoked. The macro puts a +pointer to a C structure into a static variable, +\code{PyDateTimeAPI}, that is used by the following macros. + +Type-check macros: + +\begin{cfuncdesc}{int}{PyDate_Check}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_DateType} or + a subtype of \cdata{PyDateTime_DateType}. \var{ob} must not be + \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDate_CheckExact}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_DateType}. + \var{ob} must not be \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_Check}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType} or + a subtype of \cdata{PyDateTime_DateTimeType}. \var{ob} must not be + \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_CheckExact}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType}. + \var{ob} must not be \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTime_Check}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_TimeType} or + a subtype of \cdata{PyDateTime_TimeType}. \var{ob} must not be + \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTime_CheckExact}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_TimeType}. + \var{ob} must not be \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDelta_Check}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType} or + a subtype of \cdata{PyDateTime_DeltaType}. \var{ob} must not be + \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDelta_CheckExact}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType}. + \var{ob} must not be \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTZInfo_Check}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType} or + a subtype of \cdata{PyDateTime_TZInfoType}. \var{ob} must not be + \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyTZInfo_CheckExact}{PyObject *ob} + Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType}. + \var{ob} must not be \NULL{}. + \versionadded{2.4} +\end{cfuncdesc} + +Macros to create objects: + +\begin{cfuncdesc}{PyObject*}{PyDate_FromDate}{int year, int month, int day} + Return a \code{datetime.date} object with the specified year, month + and day. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDateTime_FromDateAndTime}{int year, int month, + int day, int hour, int minute, int second, int usecond} + Return a \code{datetime.datetime} object with the specified year, month, + day, hour, minute, second and microsecond. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyTime_FromTime}{int hour, int minute, + int second, int usecond} + Return a \code{datetime.time} object with the specified hour, minute, + second and microsecond. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDelta_FromDSU}{int days, int seconds, + int useconds} + Return a \code{datetime.timedelta} object representing the given number + of days, seconds and microseconds. Normalization is performed so that + the resulting number of microseconds and seconds lie in the ranges + documented for \code{datetime.timedelta} objects. + \versionadded{2.4} +\end{cfuncdesc} + +Macros to extract fields from date objects. The argument must be an +instance of \cdata{PyDateTime_Date}, including subclasses (such as +\cdata{PyDateTime_DateTime}). The argument must not be \NULL{}, and +the type is not checked: + +\begin{cfuncdesc}{int}{PyDateTime_GET_YEAR}{PyDateTime_Date *o} + Return the year, as a positive int. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_GET_MONTH}{PyDateTime_Date *o} + Return the month, as an int from 1 through 12. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_GET_DAY}{PyDateTime_Date *o} + Return the day, as an int from 1 through 31. + \versionadded{2.4} +\end{cfuncdesc} + +Macros to extract fields from datetime objects. The argument must be an +instance of \cdata{PyDateTime_DateTime}, including subclasses. +The argument must not be \NULL{}, and the type is not checked: + +\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_HOUR}{PyDateTime_DateTime *o} + Return the hour, as an int from 0 through 23. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MINUTE}{PyDateTime_DateTime *o} + Return the minute, as an int from 0 through 59. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_SECOND}{PyDateTime_DateTime *o} + Return the second, as an int from 0 through 59. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MICROSECOND}{PyDateTime_DateTime *o} + Return the microsecond, as an int from 0 through 999999. + \versionadded{2.4} +\end{cfuncdesc} + +Macros to extract fields from time objects. The argument must be an +instance of \cdata{PyDateTime_Time}, including subclasses. +The argument must not be \NULL{}, and the type is not checked: + +\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_HOUR}{PyDateTime_Time *o} + Return the hour, as an int from 0 through 23. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MINUTE}{PyDateTime_Time *o} + Return the minute, as an int from 0 through 59. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_SECOND}{PyDateTime_Time *o} + Return the second, as an int from 0 through 59. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MICROSECOND}{PyDateTime_Time *o} + Return the microsecond, as an int from 0 through 999999. + \versionadded{2.4} +\end{cfuncdesc} + +Macros for the convenience of modules implementing the DB API: + +\begin{cfuncdesc}{PyObject*}{PyDateTime_FromTimestamp}{PyObject *args} + Create and return a new \code{datetime.datetime} object given an argument + tuple suitable for passing to \code{datetime.datetime.fromtimestamp()}. + \versionadded{2.4} +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyDate_FromTimestamp}{PyObject *args} + Create and return a new \code{datetime.date} object given an argument + tuple suitable for passing to \code{datetime.date.fromtimestamp()}. + \versionadded{2.4} +\end{cfuncdesc} + + +\subsection{Set Objects \label{setObjects}} +\sectionauthor{Raymond D. Hettinger}{python@rcn.com} + +\obindex{set} +\obindex{frozenset} +\versionadded{2.5} + +This section details the public API for \class{set} and \class{frozenset} +objects. Any functionality not listed below is best accessed using the +either the abstract object protocol (including +\cfunction{PyObject_CallMethod()}, \cfunction{PyObject_RichCompareBool()}, +\cfunction{PyObject_Hash()}, \cfunction{PyObject_Repr()}, +\cfunction{PyObject_IsTrue()}, \cfunction{PyObject_Print()}, and +\cfunction{PyObject_GetIter()}) +or the abstract number protocol (including +\cfunction{PyNumber_Add()}, \cfunction{PyNumber_Subtract()}, +\cfunction{PyNumber_Or()}, \cfunction{PyNumber_Xor()}, +\cfunction{PyNumber_InPlaceAdd()}, \cfunction{PyNumber_InPlaceSubtract()}, +\cfunction{PyNumber_InPlaceOr()}, and \cfunction{PyNumber_InPlaceXor()}). + +\begin{ctypedesc}{PySetObject} + This subtype of \ctype{PyObject} is used to hold the internal data for + both \class{set} and \class{frozenset} objects. It is like a + \ctype{PyDictObject} in that it is a fixed size for small sets + (much like tuple storage) and will point to a separate, variable sized + block of memory for medium and large sized sets (much like list storage). + None of the fields of this structure should be considered public and + are subject to change. All access should be done through the + documented API rather than by manipulating the values in the structure. + +\end{ctypedesc} + +\begin{cvardesc}{PyTypeObject}{PySet_Type} + This is an instance of \ctype{PyTypeObject} representing the Python + \class{set} type. +\end{cvardesc} + +\begin{cvardesc}{PyTypeObject}{PyFrozenSet_Type} + This is an instance of \ctype{PyTypeObject} representing the Python + \class{frozenset} type. +\end{cvardesc} + + +The following type check macros work on pointers to any Python object. +Likewise, the constructor functions work with any iterable Python object. + +\begin{cfuncdesc}{int}{PyAnySet_Check}{PyObject *p} + Return true if \var{p} is a \class{set} object, a \class{frozenset} + object, or an instance of a subtype. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyAnySet_CheckExact}{PyObject *p} + Return true if \var{p} is a \class{set} object or a \class{frozenset} + object but not an instance of a subtype. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PyFrozenSet_CheckExact}{PyObject *p} + Return true if \var{p} is a \class{frozenset} object + but not an instance of a subtype. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PySet_New}{PyObject *iterable} + Return a new \class{set} containing objects returned by the + \var{iterable}. The \var{iterable} may be \NULL{} to create a + new empty set. Return the new set on success or \NULL{} on + failure. Raise \exception{TypeError} if \var{iterable} is + not actually iterable. The constructor is also useful for + copying a set (\code{c=set(s)}). +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PyFrozenSet_New}{PyObject *iterable} + Return a new \class{frozenset} containing objects returned by the + \var{iterable}. The \var{iterable} may be \NULL{} to create a + new empty frozenset. Return the new set on success or \NULL{} on + failure. Raise \exception{TypeError} if \var{iterable} is + not actually iterable. +\end{cfuncdesc} + + +The following functions and macros are available for instances of +\class{set} or \class{frozenset} or instances of their subtypes. + +\begin{cfuncdesc}{int}{PySet_Size}{PyObject *anyset} + Return the length of a \class{set} or \class{frozenset} object. + Equivalent to \samp{len(\var{anyset})}. Raises a + \exception{PyExc_SystemError} if \var{anyset} is not a \class{set}, + \class{frozenset}, or an instance of a subtype. + \bifuncindex{len} +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PySet_GET_SIZE}{PyObject *anyset} + Macro form of \cfunction{PySet_Size()} without error checking. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PySet_Contains}{PyObject *anyset, PyObject *key} + Return 1 if found, 0 if not found, and -1 if an error is + encountered. Unlike the Python \method{__contains__()} method, this + function does not automatically convert unhashable sets into temporary + frozensets. Raise a \exception{TypeError} if the \var{key} is unhashable. + Raise \exception{PyExc_SystemError} if \var{anyset} is not a \class{set}, + \class{frozenset}, or an instance of a subtype. +\end{cfuncdesc} + +The following functions are available for instances of \class{set} or +its subtypes but not for instances of \class{frozenset} or its subtypes. + +\begin{cfuncdesc}{int}{PySet_Add}{PyObject *set, PyObject *key} + Add \var{key} to a \class{set} instance. Does not apply to + \class{frozenset} instances. Return 0 on success or -1 on failure. + Raise a \exception{TypeError} if the \var{key} is unhashable. + Raise a \exception{MemoryError} if there is no room to grow. + Raise a \exception{SystemError} if \var{set} is an not an instance + of \class{set} or its subtype. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PySet_Discard}{PyObject *set, PyObject *key} + Return 1 if found and removed, 0 if not found (no action taken), + and -1 if an error is encountered. Does not raise \exception{KeyError} + for missing keys. Raise a \exception{TypeError} if the \var{key} is + unhashable. Unlike the Python \method{discard()} method, this function + does not automatically convert unhashable sets into temporary frozensets. + Raise \exception{PyExc_SystemError} if \var{set} is an not an instance + of \class{set} or its subtype. +\end{cfuncdesc} + +\begin{cfuncdesc}{PyObject*}{PySet_Pop}{PyObject *set} + Return a new reference to an arbitrary object in the \var{set}, + and removes the object from the \var{set}. Return \NULL{} on + failure. Raise \exception{KeyError} if the set is empty. + Raise a \exception{SystemError} if \var{set} is an not an instance + of \class{set} or its subtype. +\end{cfuncdesc} + +\begin{cfuncdesc}{int}{PySet_Clear}{PyObject *set} + Empty an existing set of all elements. +\end{cfuncdesc} |