diff options
author | cinap_lenrek <cinap_lenrek@localhost> | 2011-05-03 11:25:13 +0000 |
---|---|---|
committer | cinap_lenrek <cinap_lenrek@localhost> | 2011-05-03 11:25:13 +0000 |
commit | 458120dd40db6b4df55a4e96b650e16798ef06a0 (patch) | |
tree | 8f82685be24fef97e715c6f5ca4c68d34d5074ee /sys/src/cmd/python/Doc/lib/liboperator.tex | |
parent | 3a742c699f6806c1145aea5149bf15de15a0afd7 (diff) |
add hg and python
Diffstat (limited to 'sys/src/cmd/python/Doc/lib/liboperator.tex')
-rw-r--r-- | sys/src/cmd/python/Doc/lib/liboperator.tex | 530 |
1 files changed, 530 insertions, 0 deletions
diff --git a/sys/src/cmd/python/Doc/lib/liboperator.tex b/sys/src/cmd/python/Doc/lib/liboperator.tex new file mode 100644 index 000000000..5ba3209be --- /dev/null +++ b/sys/src/cmd/python/Doc/lib/liboperator.tex @@ -0,0 +1,530 @@ +\section{\module{operator} --- + Standard operators as functions.} +\declaremodule{builtin}{operator} +\sectionauthor{Skip Montanaro}{skip@automatrix.com} + +\modulesynopsis{All Python's standard operators as built-in functions.} + + +The \module{operator} module exports a set of functions implemented in C +corresponding to the intrinsic operators of Python. For example, +\code{operator.add(x, y)} is equivalent to the expression \code{x+y}. The +function names are those used for special class methods; variants without +leading and trailing \samp{__} are also provided for convenience. + +The functions fall into categories that perform object comparisons, +logical operations, mathematical operations, sequence operations, and +abstract type tests. + +The object comparison functions are useful for all objects, and are +named after the rich comparison operators they support: + +\begin{funcdesc}{lt}{a, b} +\funcline{le}{a, b} +\funcline{eq}{a, b} +\funcline{ne}{a, b} +\funcline{ge}{a, b} +\funcline{gt}{a, b} +\funcline{__lt__}{a, b} +\funcline{__le__}{a, b} +\funcline{__eq__}{a, b} +\funcline{__ne__}{a, b} +\funcline{__ge__}{a, b} +\funcline{__gt__}{a, b} +Perform ``rich comparisons'' between \var{a} and \var{b}. Specifically, +\code{lt(\var{a}, \var{b})} is equivalent to \code{\var{a} < \var{b}}, +\code{le(\var{a}, \var{b})} is equivalent to \code{\var{a} <= \var{b}}, +\code{eq(\var{a}, \var{b})} is equivalent to \code{\var{a} == \var{b}}, +\code{ne(\var{a}, \var{b})} is equivalent to \code{\var{a} != \var{b}}, +\code{gt(\var{a}, \var{b})} is equivalent to \code{\var{a} > \var{b}} +and +\code{ge(\var{a}, \var{b})} is equivalent to \code{\var{a} >= \var{b}}. +Note that unlike the built-in \function{cmp()}, these functions can +return any value, which may or may not be interpretable as a Boolean +value. See the \citetitle[../ref/ref.html]{Python Reference Manual} +for more information about rich comparisons. +\versionadded{2.2} +\end{funcdesc} + + +The logical operations are also generally applicable to all objects, +and support truth tests, identity tests, and boolean operations: + +\begin{funcdesc}{not_}{o} +\funcline{__not__}{o} +Return the outcome of \keyword{not} \var{o}. (Note that there is no +\method{__not__()} method for object instances; only the interpreter +core defines this operation. The result is affected by the +\method{__nonzero__()} and \method{__len__()} methods.) +\end{funcdesc} + +\begin{funcdesc}{truth}{o} +Return \constant{True} if \var{o} is true, and \constant{False} +otherwise. This is equivalent to using the \class{bool} +constructor. +\end{funcdesc} + +\begin{funcdesc}{is_}{a, b} +Return \code{\var{a} is \var{b}}. Tests object identity. +\versionadded{2.3} +\end{funcdesc} + +\begin{funcdesc}{is_not}{a, b} +Return \code{\var{a} is not \var{b}}. Tests object identity. +\versionadded{2.3} +\end{funcdesc} + + +The mathematical and bitwise operations are the most numerous: + +\begin{funcdesc}{abs}{o} +\funcline{__abs__}{o} +Return the absolute value of \var{o}. +\end{funcdesc} + +\begin{funcdesc}{add}{a, b} +\funcline{__add__}{a, b} +Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers. +\end{funcdesc} + +\begin{funcdesc}{and_}{a, b} +\funcline{__and__}{a, b} +Return the bitwise and of \var{a} and \var{b}. +\end{funcdesc} + +\begin{funcdesc}{div}{a, b} +\funcline{__div__}{a, b} +Return \var{a} \code{/} \var{b} when \code{__future__.division} is not +in effect. This is also known as ``classic'' division. +\end{funcdesc} + +\begin{funcdesc}{floordiv}{a, b} +\funcline{__floordiv__}{a, b} +Return \var{a} \code{//} \var{b}. +\versionadded{2.2} +\end{funcdesc} + +\begin{funcdesc}{inv}{o} +\funcline{invert}{o} +\funcline{__inv__}{o} +\funcline{__invert__}{o} +Return the bitwise inverse of the number \var{o}. This is equivalent +to \code{\textasciitilde}\var{o}. The names \function{invert()} and +\function{__invert__()} were added in Python 2.0. +\end{funcdesc} + +\begin{funcdesc}{lshift}{a, b} +\funcline{__lshift__}{a, b} +Return \var{a} shifted left by \var{b}. +\end{funcdesc} + +\begin{funcdesc}{mod}{a, b} +\funcline{__mod__}{a, b} +Return \var{a} \code{\%} \var{b}. +\end{funcdesc} + +\begin{funcdesc}{mul}{a, b} +\funcline{__mul__}{a, b} +Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers. +\end{funcdesc} + +\begin{funcdesc}{neg}{o} +\funcline{__neg__}{o} +Return \var{o} negated. +\end{funcdesc} + +\begin{funcdesc}{or_}{a, b} +\funcline{__or__}{a, b} +Return the bitwise or of \var{a} and \var{b}. +\end{funcdesc} + +\begin{funcdesc}{pos}{o} +\funcline{__pos__}{o} +Return \var{o} positive. +\end{funcdesc} + +\begin{funcdesc}{pow}{a, b} +\funcline{__pow__}{a, b} +Return \var{a} \code{**} \var{b}, for \var{a} and \var{b} numbers. +\versionadded{2.3} +\end{funcdesc} + +\begin{funcdesc}{rshift}{a, b} +\funcline{__rshift__}{a, b} +Return \var{a} shifted right by \var{b}. +\end{funcdesc} + +\begin{funcdesc}{sub}{a, b} +\funcline{__sub__}{a, b} +Return \var{a} \code{-} \var{b}. +\end{funcdesc} + +\begin{funcdesc}{truediv}{a, b} +\funcline{__truediv__}{a, b} +Return \var{a} \code{/} \var{b} when \code{__future__.division} is in +effect. This is also known as ``true'' division. +\versionadded{2.2} +\end{funcdesc} + +\begin{funcdesc}{xor}{a, b} +\funcline{__xor__}{a, b} +Return the bitwise exclusive or of \var{a} and \var{b}. +\end{funcdesc} + +\begin{funcdesc}{index}{a} +\funcline{__index__}{a} +Return \var{a} converted to an integer. Equivalent to \var{a}\code{.__index__()}. +\versionadded{2.5} +\end{funcdesc} + +Operations which work with sequences include: + +\begin{funcdesc}{concat}{a, b} +\funcline{__concat__}{a, b} +Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences. +\end{funcdesc} + +\begin{funcdesc}{contains}{a, b} +\funcline{__contains__}{a, b} +Return the outcome of the test \var{b} \code{in} \var{a}. +Note the reversed operands. The name \function{__contains__()} was +added in Python 2.0. +\end{funcdesc} + +\begin{funcdesc}{countOf}{a, b} +Return the number of occurrences of \var{b} in \var{a}. +\end{funcdesc} + +\begin{funcdesc}{delitem}{a, b} +\funcline{__delitem__}{a, b} +Remove the value of \var{a} at index \var{b}. +\end{funcdesc} + +\begin{funcdesc}{delslice}{a, b, c} +\funcline{__delslice__}{a, b, c} +Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. +\end{funcdesc} + +\begin{funcdesc}{getitem}{a, b} +\funcline{__getitem__}{a, b} +Return the value of \var{a} at index \var{b}. +\end{funcdesc} + +\begin{funcdesc}{getslice}{a, b, c} +\funcline{__getslice__}{a, b, c} +Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}. +\end{funcdesc} + +\begin{funcdesc}{indexOf}{a, b} +Return the index of the first of occurrence of \var{b} in \var{a}. +\end{funcdesc} + +\begin{funcdesc}{repeat}{a, b} +\funcline{__repeat__}{a, b} +Return \var{a} \code{*} \var{b} where \var{a} is a sequence and +\var{b} is an integer. +\end{funcdesc} + +\begin{funcdesc}{sequenceIncludes}{\unspecified} +\deprecated{2.0}{Use \function{contains()} instead.} +Alias for \function{contains()}. +\end{funcdesc} + +\begin{funcdesc}{setitem}{a, b, c} +\funcline{__setitem__}{a, b, c} +Set the value of \var{a} at index \var{b} to \var{c}. +\end{funcdesc} + +\begin{funcdesc}{setslice}{a, b, c, v} +\funcline{__setslice__}{a, b, c, v} +Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the +sequence \var{v}. +\end{funcdesc} + + +Many operations have an ``in-place'' version. The following functions +provide a more primitive access to in-place operators than the usual +syntax does; for example, the statement \code{x += y} is equivalent to +\code{x = operator.iadd(x, y)}. Another way to put it is to say that +\code{z = operator.iadd(x, y)} is equivalent to the compound statement +\code{z = x; z += y}. + +\begin{funcdesc}{iadd}{a, b} +\funcline{__iadd__}{a, b} +\code{a = iadd(a, b)} is equivalent to \code{a += b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{iand}{a, b} +\funcline{__iand__}{a, b} +\code{a = iand(a, b)} is equivalent to \code{a \&= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{iconcat}{a, b} +\funcline{__iconcat__}{a, b} +\code{a = iconcat(a, b)} is equivalent to \code{a += b} for \var{a} +and \var{b} sequences. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{idiv}{a, b} +\funcline{__idiv__}{a, b} +\code{a = idiv(a, b)} is equivalent to \code{a /= b} when +\code{__future__.division} is not in effect. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{ifloordiv}{a, b} +\funcline{__ifloordiv__}{a, b} +\code{a = ifloordiv(a, b)} is equivalent to \code{a //= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{ilshift}{a, b} +\funcline{__ilshift__}{a, b} +\code{a = ilshift(a, b)} is equivalent to \code{a <}\code{<= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{imod}{a, b} +\funcline{__imod__}{a, b} +\code{a = imod(a, b)} is equivalent to \code{a \%= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{imul}{a, b} +\funcline{__imul__}{a, b} +\code{a = imul(a, b)} is equivalent to \code{a *= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{ior}{a, b} +\funcline{__ior__}{a, b} +\code{a = ior(a, b)} is equivalent to \code{a |= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{ipow}{a, b} +\funcline{__ipow__}{a, b} +\code{a = ipow(a, b)} is equivalent to \code{a **= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{irepeat}{a, b} +\funcline{__irepeat__}{a, b} +\code{a = irepeat(a, b)} is equivalent to \code{a *= b} where +\var{a} is a sequence and \var{b} is an integer. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{irshift}{a, b} +\funcline{__irshift__}{a, b} +\code{a = irshift(a, b)} is equivalent to \code{a >>= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{isub}{a, b} +\funcline{__isub__}{a, b} +\code{a = isub(a, b)} is equivalent to \code{a -= b}. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{itruediv}{a, b} +\funcline{__itruediv__}{a, b} +\code{a = itruediv(a, b)} is equivalent to \code{a /= b} when +\code{__future__.division} is in effect. +\versionadded{2.5} +\end{funcdesc} + +\begin{funcdesc}{ixor}{a, b} +\funcline{__ixor__}{a, b} +\code{a = ixor(a, b)} is equivalent to \code{a \textasciicircum= b}. +\versionadded{2.5} +\end{funcdesc} + + +The \module{operator} module also defines a few predicates to test the +type of objects. \note{Be careful not to misinterpret the +results of these functions; only \function{isCallable()} has any +measure of reliability with instance objects. For example:} + +\begin{verbatim} +>>> class C: +... pass +... +>>> import operator +>>> o = C() +>>> operator.isMappingType(o) +True +\end{verbatim} + +\begin{funcdesc}{isCallable}{o} +\deprecated{2.0}{Use the \function{callable()} built-in function instead.} +Returns true if the object \var{o} can be called like a function, +otherwise it returns false. True is returned for functions, bound and +unbound methods, class objects, and instance objects which support the +\method{__call__()} method. +\end{funcdesc} + +\begin{funcdesc}{isMappingType}{o} +Returns true if the object \var{o} supports the mapping interface. +This is true for dictionaries and all instance objects defining +\method{__getitem__}. +\warning{There is no reliable way to test if an instance +supports the complete mapping protocol since the interface itself is +ill-defined. This makes this test less useful than it otherwise might +be.} +\end{funcdesc} + +\begin{funcdesc}{isNumberType}{o} +Returns true if the object \var{o} represents a number. This is true +for all numeric types implemented in C. +\warning{There is no reliable way to test if an instance +supports the complete numeric interface since the interface itself is +ill-defined. This makes this test less useful than it otherwise might +be.} +\end{funcdesc} + +\begin{funcdesc}{isSequenceType}{o} +Returns true if the object \var{o} supports the sequence protocol. +This returns true for all objects which define sequence methods in C, +and for all instance objects defining \method{__getitem__}. +\warning{There is no reliable +way to test if an instance supports the complete sequence interface +since the interface itself is ill-defined. This makes this test less +useful than it otherwise might be.} +\end{funcdesc} + + +Example: Build a dictionary that maps the ordinals from \code{0} to +\code{255} to their character equivalents. + +\begin{verbatim} +>>> import operator +>>> d = {} +>>> keys = range(256) +>>> vals = map(chr, keys) +>>> map(operator.setitem, [d]*len(keys), keys, vals) +\end{verbatim} + + +The \module{operator} module also defines tools for generalized attribute +and item lookups. These are useful for making fast field extractors +as arguments for \function{map()}, \function{sorted()}, +\method{itertools.groupby()}, or other functions that expect a +function argument. + +\begin{funcdesc}{attrgetter}{attr\optional{, args...}} +Return a callable object that fetches \var{attr} from its operand. +If more than one attribute is requested, returns a tuple of attributes. +After, \samp{f=attrgetter('name')}, the call \samp{f(b)} returns +\samp{b.name}. After, \samp{f=attrgetter('name', 'date')}, the call +\samp{f(b)} returns \samp{(b.name, b.date)}. +\versionadded{2.4} +\versionchanged[Added support for multiple attributes]{2.5} +\end{funcdesc} + +\begin{funcdesc}{itemgetter}{item\optional{, args...}} +Return a callable object that fetches \var{item} from its operand. +If more than one item is requested, returns a tuple of items. +After, \samp{f=itemgetter(2)}, the call \samp{f(b)} returns +\samp{b[2]}. +After, \samp{f=itemgetter(2,5,3)}, the call \samp{f(b)} returns +\samp{(b[2], b[5], b[3])}. +\versionadded{2.4} +\versionchanged[Added support for multiple item extraction]{2.5} +\end{funcdesc} + +Examples: + +\begin{verbatim} +>>> from operator import itemgetter +>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)] +>>> getcount = itemgetter(1) +>>> map(getcount, inventory) +[3, 2, 5, 1] +>>> sorted(inventory, key=getcount) +[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)] +\end{verbatim} + + +\subsection{Mapping Operators to Functions \label{operator-map}} + +This table shows how abstract operations correspond to operator +symbols in the Python syntax and the functions in the +\refmodule{operator} module. + + +\begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function} + \lineiii{Addition}{\code{\var{a} + \var{b}}} + {\code{add(\var{a}, \var{b})}} + \lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}} + {\code{concat(\var{seq1}, \var{seq2})}} + \lineiii{Containment Test}{\code{\var{o} in \var{seq}}} + {\code{contains(\var{seq}, \var{o})}} + \lineiii{Division}{\code{\var{a} / \var{b}}} + {\code{div(\var{a}, \var{b}) \#} without \code{__future__.division}} + \lineiii{Division}{\code{\var{a} / \var{b}}} + {\code{truediv(\var{a}, \var{b}) \#} with \code{__future__.division}} + \lineiii{Division}{\code{\var{a} // \var{b}}} + {\code{floordiv(\var{a}, \var{b})}} + \lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}} + {\code{and_(\var{a}, \var{b})}} + \lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}} + {\code{xor(\var{a}, \var{b})}} + \lineiii{Bitwise Inversion}{\code{\~{} \var{a}}} + {\code{invert(\var{a})}} + \lineiii{Bitwise Or}{\code{\var{a} | \var{b}}} + {\code{or_(\var{a}, \var{b})}} + \lineiii{Exponentiation}{\code{\var{a} ** \var{b}}} + {\code{pow(\var{a}, \var{b})}} + \lineiii{Identity}{\code{\var{a} is \var{b}}} + {\code{is_(\var{a}, \var{b})}} + \lineiii{Identity}{\code{\var{a} is not \var{b}}} + {\code{is_not(\var{a}, \var{b})}} + \lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}} + {\code{setitem(\var{o}, \var{k}, \var{v})}} + \lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}} + {\code{delitem(\var{o}, \var{k})}} + \lineiii{Indexing}{\code{\var{o}[\var{k}]}} + {\code{getitem(\var{o}, \var{k})}} + \lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}} + {\code{lshift(\var{a}, \var{b})}} + \lineiii{Modulo}{\code{\var{a} \%\ \var{b}}} + {\code{mod(\var{a}, \var{b})}} + \lineiii{Multiplication}{\code{\var{a} * \var{b}}} + {\code{mul(\var{a}, \var{b})}} + \lineiii{Negation (Arithmetic)}{\code{- \var{a}}} + {\code{neg(\var{a})}} + \lineiii{Negation (Logical)}{\code{not \var{a}}} + {\code{not_(\var{a})}} + \lineiii{Right Shift}{\code{\var{a} >> \var{b}}} + {\code{rshift(\var{a}, \var{b})}} + \lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}} + {\code{repeat(\var{seq}, \var{i})}} + \lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}} + {\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}} + \lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}} + {\code{delslice(\var{seq}, \var{i}, \var{j})}} + \lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}} + {\code{getslice(\var{seq}, \var{i}, \var{j})}} + \lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}} + {\code{mod(\var{s}, \var{o})}} + \lineiii{Subtraction}{\code{\var{a} - \var{b}}} + {\code{sub(\var{a}, \var{b})}} + \lineiii{Truth Test}{\code{\var{o}}} + {\code{truth(\var{o})}} + \lineiii{Ordering}{\code{\var{a} < \var{b}}} + {\code{lt(\var{a}, \var{b})}} + \lineiii{Ordering}{\code{\var{a} <= \var{b}}} + {\code{le(\var{a}, \var{b})}} + \lineiii{Equality}{\code{\var{a} == \var{b}}} + {\code{eq(\var{a}, \var{b})}} + \lineiii{Difference}{\code{\var{a} != \var{b}}} + {\code{ne(\var{a}, \var{b})}} + \lineiii{Ordering}{\code{\var{a} >= \var{b}}} + {\code{ge(\var{a}, \var{b})}} + \lineiii{Ordering}{\code{\var{a} > \var{b}}} + {\code{gt(\var{a}, \var{b})}} +\end{tableiii} |