diff options
author | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
---|---|---|
committer | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
commit | a73a964e51247ed169d322c725a3a18859f109a3 (patch) | |
tree | 3f752d117274d444bda44e85609aeac1acf313f3 /sys/src/cmd/python/Include/objimpl.h | |
parent | e64efe273fcb921a61bf27d33b230c4e64fcd425 (diff) |
python, hg: tow outside the environment.
they've served us well, and can ride off into the sunset.
Diffstat (limited to 'sys/src/cmd/python/Include/objimpl.h')
-rw-r--r-- | sys/src/cmd/python/Include/objimpl.h | 336 |
1 files changed, 0 insertions, 336 deletions
diff --git a/sys/src/cmd/python/Include/objimpl.h b/sys/src/cmd/python/Include/objimpl.h deleted file mode 100644 index 03b6a8d49..000000000 --- a/sys/src/cmd/python/Include/objimpl.h +++ /dev/null @@ -1,336 +0,0 @@ -/* The PyObject_ memory family: high-level object memory interfaces. - See pymem.h for the low-level PyMem_ family. -*/ - -#ifndef Py_OBJIMPL_H -#define Py_OBJIMPL_H - -#include "pymem.h" - -#ifdef __cplusplus -extern "C" { -#endif - -/* BEWARE: - - Each interface exports both functions and macros. Extension modules should - use the functions, to ensure binary compatibility across Python versions. - Because the Python implementation is free to change internal details, and - the macros may (or may not) expose details for speed, if you do use the - macros you must recompile your extensions with each Python release. - - Never mix calls to PyObject_ memory functions with calls to the platform - malloc/realloc/ calloc/free, or with calls to PyMem_. -*/ - -/* -Functions and macros for modules that implement new object types. - - - PyObject_New(type, typeobj) allocates memory for a new object of the given - type, and initializes part of it. 'type' must be the C structure type used - to represent the object, and 'typeobj' the address of the corresponding - type object. Reference count and type pointer are filled in; the rest of - the bytes of the object are *undefined*! The resulting expression type is - 'type *'. The size of the object is determined by the tp_basicsize field - of the type object. - - - PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size - object with room for n items. In addition to the refcount and type pointer - fields, this also fills in the ob_size field. - - - PyObject_Del(op) releases the memory allocated for an object. It does not - run a destructor -- it only frees the memory. PyObject_Free is identical. - - - PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't - allocate memory. Instead of a 'type' parameter, they take a pointer to a - new object (allocated by an arbitrary allocator), and initialize its object - header fields. - -Note that objects created with PyObject_{New, NewVar} are allocated using the -specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is -enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG -is also #defined. - -In case a specific form of memory management is needed (for example, if you -must use the platform malloc heap(s), or shared memory, or C++ local storage or -operator new), you must first allocate the object with your custom allocator, -then pass its pointer to PyObject_{Init, InitVar} for filling in its Python- -specific fields: reference count, type pointer, possibly others. You should -be aware that Python no control over these objects because they don't -cooperate with the Python memory manager. Such objects may not be eligible -for automatic garbage collection and you have to make sure that they are -released accordingly whenever their destructor gets called (cf. the specific -form of memory management you're using). - -Unless you have specific memory management requirements, use -PyObject_{New, NewVar, Del}. -*/ - -/* - * Raw object memory interface - * =========================== - */ - -/* Functions to call the same malloc/realloc/free as used by Python's - object allocator. If WITH_PYMALLOC is enabled, these may differ from - the platform malloc/realloc/free. The Python object allocator is - designed for fast, cache-conscious allocation of many "small" objects, - and with low hidden memory overhead. - - PyObject_Malloc(0) returns a unique non-NULL pointer if possible. - - PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n). - PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory - at p. - - Returned pointers must be checked for NULL explicitly; no action is - performed on failure other than to return NULL (no warning it printed, no - exception is set, etc). - - For allocating objects, use PyObject_{New, NewVar} instead whenever - possible. The PyObject_{Malloc, Realloc, Free} family is exposed - so that you can exploit Python's small-block allocator for non-object - uses. If you must use these routines to allocate object memory, make sure - the object gets initialized via PyObject_{Init, InitVar} after obtaining - the raw memory. -*/ -PyAPI_FUNC(void *) PyObject_Malloc(size_t); -PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t); -PyAPI_FUNC(void) PyObject_Free(void *); - - -/* Macros */ -#ifdef WITH_PYMALLOC -#ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */ -PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes); -PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes); -PyAPI_FUNC(void) _PyObject_DebugFree(void *p); -PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p); -PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p); -PyAPI_FUNC(void) _PyObject_DebugMallocStats(void); -#define PyObject_MALLOC _PyObject_DebugMalloc -#define PyObject_Malloc _PyObject_DebugMalloc -#define PyObject_REALLOC _PyObject_DebugRealloc -#define PyObject_Realloc _PyObject_DebugRealloc -#define PyObject_FREE _PyObject_DebugFree -#define PyObject_Free _PyObject_DebugFree - -#else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */ -#define PyObject_MALLOC PyObject_Malloc -#define PyObject_REALLOC PyObject_Realloc -#define PyObject_FREE PyObject_Free -#endif - -#else /* ! WITH_PYMALLOC */ -#define PyObject_MALLOC PyMem_MALLOC -#define PyObject_REALLOC PyMem_REALLOC -#define PyObject_FREE PyMem_FREE - -#endif /* WITH_PYMALLOC */ - -#define PyObject_Del PyObject_Free -#define PyObject_DEL PyObject_FREE - -/* for source compatibility with 2.2 */ -#define _PyObject_Del PyObject_Free - -/* - * Generic object allocator interface - * ================================== - */ - -/* Functions */ -PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *); -PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *, - PyTypeObject *, Py_ssize_t); -PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *); -PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t); - -#define PyObject_New(type, typeobj) \ - ( (type *) _PyObject_New(typeobj) ) -#define PyObject_NewVar(type, typeobj, n) \ - ( (type *) _PyObject_NewVar((typeobj), (n)) ) - -/* Macros trading binary compatibility for speed. See also pymem.h. - Note that these macros expect non-NULL object pointers.*/ -#define PyObject_INIT(op, typeobj) \ - ( (op)->ob_type = (typeobj), _Py_NewReference((PyObject *)(op)), (op) ) -#define PyObject_INIT_VAR(op, typeobj, size) \ - ( (op)->ob_size = (size), PyObject_INIT((op), (typeobj)) ) - -#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize ) - -/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a - vrbl-size object with nitems items, exclusive of gc overhead (if any). The - value is rounded up to the closest multiple of sizeof(void *), in order to - ensure that pointer fields at the end of the object are correctly aligned - for the platform (this is of special importance for subclasses of, e.g., - str or long, so that pointers can be stored after the embedded data). - - Note that there's no memory wastage in doing this, as malloc has to - return (at worst) pointer-aligned memory anyway. -*/ -#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0 -# error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2" -#endif - -#define _PyObject_VAR_SIZE(typeobj, nitems) \ - (size_t) \ - ( ( (typeobj)->tp_basicsize + \ - (nitems)*(typeobj)->tp_itemsize + \ - (SIZEOF_VOID_P - 1) \ - ) & ~(SIZEOF_VOID_P - 1) \ - ) - -#define PyObject_NEW(type, typeobj) \ -( (type *) PyObject_Init( \ - (PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) ) - -#define PyObject_NEW_VAR(type, typeobj, n) \ -( (type *) PyObject_InitVar( \ - (PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\ - (typeobj), (n)) ) - -/* This example code implements an object constructor with a custom - allocator, where PyObject_New is inlined, and shows the important - distinction between two steps (at least): - 1) the actual allocation of the object storage; - 2) the initialization of the Python specific fields - in this storage with PyObject_{Init, InitVar}. - - PyObject * - YourObject_New(...) - { - PyObject *op; - - op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct)); - if (op == NULL) - return PyErr_NoMemory(); - - PyObject_Init(op, &YourTypeStruct); - - op->ob_field = value; - ... - return op; - } - - Note that in C++, the use of the new operator usually implies that - the 1st step is performed automatically for you, so in a C++ class - constructor you would start directly with PyObject_Init/InitVar -*/ - -/* - * Garbage Collection Support - * ========================== - */ - -/* C equivalent of gc.collect(). */ -PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void); - -/* Test if a type has a GC head */ -#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC) - -/* Test if an object has a GC head */ -#define PyObject_IS_GC(o) (PyType_IS_GC((o)->ob_type) && \ - ((o)->ob_type->tp_is_gc == NULL || (o)->ob_type->tp_is_gc(o))) - -PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t); -#define PyObject_GC_Resize(type, op, n) \ - ( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) ) - -/* for source compatibility with 2.2 */ -#define _PyObject_GC_Del PyObject_GC_Del - -/* GC information is stored BEFORE the object structure. */ -typedef union _gc_head { - struct { - union _gc_head *gc_next; - union _gc_head *gc_prev; - Py_ssize_t gc_refs; - } gc; - long double dummy; /* force worst-case alignment */ -} PyGC_Head; - -extern PyGC_Head *_PyGC_generation0; - -#define _Py_AS_GC(o) ((PyGC_Head *)(o)-1) - -#define _PyGC_REFS_UNTRACKED (-2) -#define _PyGC_REFS_REACHABLE (-3) -#define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4) - -/* Tell the GC to track this object. NB: While the object is tracked the - * collector it must be safe to call the ob_traverse method. */ -#define _PyObject_GC_TRACK(o) do { \ - PyGC_Head *g = _Py_AS_GC(o); \ - if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \ - Py_FatalError("GC object already tracked"); \ - g->gc.gc_refs = _PyGC_REFS_REACHABLE; \ - g->gc.gc_next = _PyGC_generation0; \ - g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \ - g->gc.gc_prev->gc.gc_next = g; \ - _PyGC_generation0->gc.gc_prev = g; \ - } while (0); - -/* Tell the GC to stop tracking this object. - * gc_next doesn't need to be set to NULL, but doing so is a good - * way to provoke memory errors if calling code is confused. - */ -#define _PyObject_GC_UNTRACK(o) do { \ - PyGC_Head *g = _Py_AS_GC(o); \ - assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \ - g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \ - g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \ - g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \ - g->gc.gc_next = NULL; \ - } while (0); - -PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t); -PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *); -PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t); -PyAPI_FUNC(void) PyObject_GC_Track(void *); -PyAPI_FUNC(void) PyObject_GC_UnTrack(void *); -PyAPI_FUNC(void) PyObject_GC_Del(void *); - -#define PyObject_GC_New(type, typeobj) \ - ( (type *) _PyObject_GC_New(typeobj) ) -#define PyObject_GC_NewVar(type, typeobj, n) \ - ( (type *) _PyObject_GC_NewVar((typeobj), (n)) ) - - -/* Utility macro to help write tp_traverse functions. - * To use this macro, the tp_traverse function must name its arguments - * "visit" and "arg". This is intended to keep tp_traverse functions - * looking as much alike as possible. - */ -#define Py_VISIT(op) \ - do { \ - if (op) { \ - int vret = visit((PyObject *)(op), arg); \ - if (vret) \ - return vret; \ - } \ - } while (0) - -/* This is here for the sake of backwards compatibility. Extensions that - * use the old GC API will still compile but the objects will not be - * tracked by the GC. */ -#define PyGC_HEAD_SIZE 0 -#define PyObject_GC_Init(op) -#define PyObject_GC_Fini(op) -#define PyObject_AS_GC(op) (op) -#define PyObject_FROM_GC(op) (op) - - -/* Test if a type supports weak references */ -#define PyType_SUPPORTS_WEAKREFS(t) \ - (PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \ - && ((t)->tp_weaklistoffset > 0)) - -#define PyObject_GET_WEAKREFS_LISTPTR(o) \ - ((PyObject **) (((char *) (o)) + (o)->ob_type->tp_weaklistoffset)) - -#ifdef __cplusplus -} -#endif -#endif /* !Py_OBJIMPL_H */ |