summaryrefslogtreecommitdiff
path: root/sys/src/cmd/python/Modules/cmathmodule.c
diff options
context:
space:
mode:
authorcinap_lenrek <cinap_lenrek@localhost>2011-05-03 11:25:13 +0000
committercinap_lenrek <cinap_lenrek@localhost>2011-05-03 11:25:13 +0000
commit458120dd40db6b4df55a4e96b650e16798ef06a0 (patch)
tree8f82685be24fef97e715c6f5ca4c68d34d5074ee /sys/src/cmd/python/Modules/cmathmodule.c
parent3a742c699f6806c1145aea5149bf15de15a0afd7 (diff)
add hg and python
Diffstat (limited to 'sys/src/cmd/python/Modules/cmathmodule.c')
-rw-r--r--sys/src/cmd/python/Modules/cmathmodule.c426
1 files changed, 426 insertions, 0 deletions
diff --git a/sys/src/cmd/python/Modules/cmathmodule.c b/sys/src/cmd/python/Modules/cmathmodule.c
new file mode 100644
index 000000000..ec48ce8d7
--- /dev/null
+++ b/sys/src/cmd/python/Modules/cmathmodule.c
@@ -0,0 +1,426 @@
+/* Complex math module */
+
+/* much code borrowed from mathmodule.c */
+
+#include "Python.h"
+
+#ifndef M_PI
+#define M_PI (3.141592653589793239)
+#endif
+
+/* First, the C functions that do the real work */
+
+/* constants */
+static Py_complex c_one = {1., 0.};
+static Py_complex c_half = {0.5, 0.};
+static Py_complex c_i = {0., 1.};
+static Py_complex c_halfi = {0., 0.5};
+
+/* forward declarations */
+static Py_complex c_log(Py_complex);
+static Py_complex c_prodi(Py_complex);
+static Py_complex c_sqrt(Py_complex);
+static PyObject * math_error(void);
+
+
+static Py_complex
+c_acos(Py_complex x)
+{
+ return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
+ c_sqrt(c_diff(c_one,c_prod(x,x))))))));
+}
+
+PyDoc_STRVAR(c_acos_doc,
+"acos(x)\n"
+"\n"
+"Return the arc cosine of x.");
+
+
+static Py_complex
+c_acosh(Py_complex x)
+{
+ Py_complex z;
+ z = c_sqrt(c_half);
+ z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
+ c_sqrt(c_diff(x,c_one)))));
+ return c_sum(z, z);
+}
+
+PyDoc_STRVAR(c_acosh_doc,
+"acosh(x)\n"
+"\n"
+"Return the hyperbolic arccosine of x.");
+
+
+static Py_complex
+c_asin(Py_complex x)
+{
+ /* -i * log[(sqrt(1-x**2) + i*x] */
+ const Py_complex squared = c_prod(x, x);
+ const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
+ return c_neg(c_prodi(c_log(
+ c_sum(sqrt_1_minus_x_sq, c_prodi(x))
+ ) ) );
+}
+
+PyDoc_STRVAR(c_asin_doc,
+"asin(x)\n"
+"\n"
+"Return the arc sine of x.");
+
+
+static Py_complex
+c_asinh(Py_complex x)
+{
+ Py_complex z;
+ z = c_sqrt(c_half);
+ z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
+ c_sqrt(c_diff(x, c_i)))));
+ return c_sum(z, z);
+}
+
+PyDoc_STRVAR(c_asinh_doc,
+"asinh(x)\n"
+"\n"
+"Return the hyperbolic arc sine of x.");
+
+
+static Py_complex
+c_atan(Py_complex x)
+{
+ return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
+}
+
+PyDoc_STRVAR(c_atan_doc,
+"atan(x)\n"
+"\n"
+"Return the arc tangent of x.");
+
+
+static Py_complex
+c_atanh(Py_complex x)
+{
+ return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
+}
+
+PyDoc_STRVAR(c_atanh_doc,
+"atanh(x)\n"
+"\n"
+"Return the hyperbolic arc tangent of x.");
+
+
+static Py_complex
+c_cos(Py_complex x)
+{
+ Py_complex r;
+ r.real = cos(x.real)*cosh(x.imag);
+ r.imag = -sin(x.real)*sinh(x.imag);
+ return r;
+}
+
+PyDoc_STRVAR(c_cos_doc,
+"cos(x)\n"
+"n"
+"Return the cosine of x.");
+
+
+static Py_complex
+c_cosh(Py_complex x)
+{
+ Py_complex r;
+ r.real = cos(x.imag)*cosh(x.real);
+ r.imag = sin(x.imag)*sinh(x.real);
+ return r;
+}
+
+PyDoc_STRVAR(c_cosh_doc,
+"cosh(x)\n"
+"n"
+"Return the hyperbolic cosine of x.");
+
+
+static Py_complex
+c_exp(Py_complex x)
+{
+ Py_complex r;
+ double l = exp(x.real);
+ r.real = l*cos(x.imag);
+ r.imag = l*sin(x.imag);
+ return r;
+}
+
+PyDoc_STRVAR(c_exp_doc,
+"exp(x)\n"
+"\n"
+"Return the exponential value e**x.");
+
+
+static Py_complex
+c_log(Py_complex x)
+{
+ Py_complex r;
+ double l = hypot(x.real,x.imag);
+ r.imag = atan2(x.imag, x.real);
+ r.real = log(l);
+ return r;
+}
+
+
+static Py_complex
+c_log10(Py_complex x)
+{
+ Py_complex r;
+ double l = hypot(x.real,x.imag);
+ r.imag = atan2(x.imag, x.real)/log(10.);
+ r.real = log10(l);
+ return r;
+}
+
+PyDoc_STRVAR(c_log10_doc,
+"log10(x)\n"
+"\n"
+"Return the base-10 logarithm of x.");
+
+
+/* internal function not available from Python */
+static Py_complex
+c_prodi(Py_complex x)
+{
+ Py_complex r;
+ r.real = -x.imag;
+ r.imag = x.real;
+ return r;
+}
+
+
+static Py_complex
+c_sin(Py_complex x)
+{
+ Py_complex r;
+ r.real = sin(x.real) * cosh(x.imag);
+ r.imag = cos(x.real) * sinh(x.imag);
+ return r;
+}
+
+PyDoc_STRVAR(c_sin_doc,
+"sin(x)\n"
+"\n"
+"Return the sine of x.");
+
+
+static Py_complex
+c_sinh(Py_complex x)
+{
+ Py_complex r;
+ r.real = cos(x.imag) * sinh(x.real);
+ r.imag = sin(x.imag) * cosh(x.real);
+ return r;
+}
+
+PyDoc_STRVAR(c_sinh_doc,
+"sinh(x)\n"
+"\n"
+"Return the hyperbolic sine of x.");
+
+
+static Py_complex
+c_sqrt(Py_complex x)
+{
+ Py_complex r;
+ double s,d;
+ if (x.real == 0. && x.imag == 0.)
+ r = x;
+ else {
+ s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
+ d = 0.5*x.imag/s;
+ if (x.real > 0.) {
+ r.real = s;
+ r.imag = d;
+ }
+ else if (x.imag >= 0.) {
+ r.real = d;
+ r.imag = s;
+ }
+ else {
+ r.real = -d;
+ r.imag = -s;
+ }
+ }
+ return r;
+}
+
+PyDoc_STRVAR(c_sqrt_doc,
+"sqrt(x)\n"
+"\n"
+"Return the square root of x.");
+
+
+static Py_complex
+c_tan(Py_complex x)
+{
+ Py_complex r;
+ double sr,cr,shi,chi;
+ double rs,is,rc,ic;
+ double d;
+ sr = sin(x.real);
+ cr = cos(x.real);
+ shi = sinh(x.imag);
+ chi = cosh(x.imag);
+ rs = sr * chi;
+ is = cr * shi;
+ rc = cr * chi;
+ ic = -sr * shi;
+ d = rc*rc + ic * ic;
+ r.real = (rs*rc + is*ic) / d;
+ r.imag = (is*rc - rs*ic) / d;
+ return r;
+}
+
+PyDoc_STRVAR(c_tan_doc,
+"tan(x)\n"
+"\n"
+"Return the tangent of x.");
+
+
+static Py_complex
+c_tanh(Py_complex x)
+{
+ Py_complex r;
+ double si,ci,shr,chr;
+ double rs,is,rc,ic;
+ double d;
+ si = sin(x.imag);
+ ci = cos(x.imag);
+ shr = sinh(x.real);
+ chr = cosh(x.real);
+ rs = ci * shr;
+ is = si * chr;
+ rc = ci * chr;
+ ic = si * shr;
+ d = rc*rc + ic*ic;
+ r.real = (rs*rc + is*ic) / d;
+ r.imag = (is*rc - rs*ic) / d;
+ return r;
+}
+
+PyDoc_STRVAR(c_tanh_doc,
+"tanh(x)\n"
+"\n"
+"Return the hyperbolic tangent of x.");
+
+static PyObject *
+cmath_log(PyObject *self, PyObject *args)
+{
+ Py_complex x;
+ Py_complex y;
+
+ if (!PyArg_ParseTuple(args, "D|D", &x, &y))
+ return NULL;
+
+ errno = 0;
+ PyFPE_START_PROTECT("complex function", return 0)
+ x = c_log(x);
+ if (PyTuple_GET_SIZE(args) == 2)
+ x = c_quot(x, c_log(y));
+ PyFPE_END_PROTECT(x)
+ if (errno != 0)
+ return math_error();
+ Py_ADJUST_ERANGE2(x.real, x.imag);
+ return PyComplex_FromCComplex(x);
+}
+
+PyDoc_STRVAR(cmath_log_doc,
+"log(x[, base]) -> the logarithm of x to the given base.\n\
+If the base not specified, returns the natural logarithm (base e) of x.");
+
+
+/* And now the glue to make them available from Python: */
+
+static PyObject *
+math_error(void)
+{
+ if (errno == EDOM)
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+ else if (errno == ERANGE)
+ PyErr_SetString(PyExc_OverflowError, "math range error");
+ else /* Unexpected math error */
+ PyErr_SetFromErrno(PyExc_ValueError);
+ return NULL;
+}
+
+static PyObject *
+math_1(PyObject *args, Py_complex (*func)(Py_complex))
+{
+ Py_complex x;
+ if (!PyArg_ParseTuple(args, "D", &x))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("complex function", return 0)
+ x = (*func)(x);
+ PyFPE_END_PROTECT(x)
+ Py_ADJUST_ERANGE2(x.real, x.imag);
+ if (errno != 0)
+ return math_error();
+ else
+ return PyComplex_FromCComplex(x);
+}
+
+#define FUNC1(stubname, func) \
+ static PyObject * stubname(PyObject *self, PyObject *args) { \
+ return math_1(args, func); \
+ }
+
+FUNC1(cmath_acos, c_acos)
+FUNC1(cmath_acosh, c_acosh)
+FUNC1(cmath_asin, c_asin)
+FUNC1(cmath_asinh, c_asinh)
+FUNC1(cmath_atan, c_atan)
+FUNC1(cmath_atanh, c_atanh)
+FUNC1(cmath_cos, c_cos)
+FUNC1(cmath_cosh, c_cosh)
+FUNC1(cmath_exp, c_exp)
+FUNC1(cmath_log10, c_log10)
+FUNC1(cmath_sin, c_sin)
+FUNC1(cmath_sinh, c_sinh)
+FUNC1(cmath_sqrt, c_sqrt)
+FUNC1(cmath_tan, c_tan)
+FUNC1(cmath_tanh, c_tanh)
+
+
+PyDoc_STRVAR(module_doc,
+"This module is always available. It provides access to mathematical\n"
+"functions for complex numbers.");
+
+static PyMethodDef cmath_methods[] = {
+ {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
+ {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
+ {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
+ {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
+ {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
+ {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
+ {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
+ {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
+ {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
+ {"log", cmath_log, METH_VARARGS, cmath_log_doc},
+ {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
+ {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
+ {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
+ {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
+ {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
+ {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+PyMODINIT_FUNC
+initcmath(void)
+{
+ PyObject *m;
+
+ m = Py_InitModule3("cmath", cmath_methods, module_doc);
+ if (m == NULL)
+ return;
+
+ PyModule_AddObject(m, "pi",
+ PyFloat_FromDouble(atan(1.0) * 4.0));
+ PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
+}