summaryrefslogtreecommitdiff
path: root/sys/src/cmd/python/Modules/cmathmodule.c
diff options
context:
space:
mode:
authorOri Bernstein <ori@eigenstate.org>2021-06-14 00:00:37 +0000
committerOri Bernstein <ori@eigenstate.org>2021-06-14 00:00:37 +0000
commita73a964e51247ed169d322c725a3a18859f109a3 (patch)
tree3f752d117274d444bda44e85609aeac1acf313f3 /sys/src/cmd/python/Modules/cmathmodule.c
parente64efe273fcb921a61bf27d33b230c4e64fcd425 (diff)
python, hg: tow outside the environment.
they've served us well, and can ride off into the sunset.
Diffstat (limited to 'sys/src/cmd/python/Modules/cmathmodule.c')
-rw-r--r--sys/src/cmd/python/Modules/cmathmodule.c426
1 files changed, 0 insertions, 426 deletions
diff --git a/sys/src/cmd/python/Modules/cmathmodule.c b/sys/src/cmd/python/Modules/cmathmodule.c
deleted file mode 100644
index ec48ce8d7..000000000
--- a/sys/src/cmd/python/Modules/cmathmodule.c
+++ /dev/null
@@ -1,426 +0,0 @@
-/* Complex math module */
-
-/* much code borrowed from mathmodule.c */
-
-#include "Python.h"
-
-#ifndef M_PI
-#define M_PI (3.141592653589793239)
-#endif
-
-/* First, the C functions that do the real work */
-
-/* constants */
-static Py_complex c_one = {1., 0.};
-static Py_complex c_half = {0.5, 0.};
-static Py_complex c_i = {0., 1.};
-static Py_complex c_halfi = {0., 0.5};
-
-/* forward declarations */
-static Py_complex c_log(Py_complex);
-static Py_complex c_prodi(Py_complex);
-static Py_complex c_sqrt(Py_complex);
-static PyObject * math_error(void);
-
-
-static Py_complex
-c_acos(Py_complex x)
-{
- return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
- c_sqrt(c_diff(c_one,c_prod(x,x))))))));
-}
-
-PyDoc_STRVAR(c_acos_doc,
-"acos(x)\n"
-"\n"
-"Return the arc cosine of x.");
-
-
-static Py_complex
-c_acosh(Py_complex x)
-{
- Py_complex z;
- z = c_sqrt(c_half);
- z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
- c_sqrt(c_diff(x,c_one)))));
- return c_sum(z, z);
-}
-
-PyDoc_STRVAR(c_acosh_doc,
-"acosh(x)\n"
-"\n"
-"Return the hyperbolic arccosine of x.");
-
-
-static Py_complex
-c_asin(Py_complex x)
-{
- /* -i * log[(sqrt(1-x**2) + i*x] */
- const Py_complex squared = c_prod(x, x);
- const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
- return c_neg(c_prodi(c_log(
- c_sum(sqrt_1_minus_x_sq, c_prodi(x))
- ) ) );
-}
-
-PyDoc_STRVAR(c_asin_doc,
-"asin(x)\n"
-"\n"
-"Return the arc sine of x.");
-
-
-static Py_complex
-c_asinh(Py_complex x)
-{
- Py_complex z;
- z = c_sqrt(c_half);
- z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
- c_sqrt(c_diff(x, c_i)))));
- return c_sum(z, z);
-}
-
-PyDoc_STRVAR(c_asinh_doc,
-"asinh(x)\n"
-"\n"
-"Return the hyperbolic arc sine of x.");
-
-
-static Py_complex
-c_atan(Py_complex x)
-{
- return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
-}
-
-PyDoc_STRVAR(c_atan_doc,
-"atan(x)\n"
-"\n"
-"Return the arc tangent of x.");
-
-
-static Py_complex
-c_atanh(Py_complex x)
-{
- return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
-}
-
-PyDoc_STRVAR(c_atanh_doc,
-"atanh(x)\n"
-"\n"
-"Return the hyperbolic arc tangent of x.");
-
-
-static Py_complex
-c_cos(Py_complex x)
-{
- Py_complex r;
- r.real = cos(x.real)*cosh(x.imag);
- r.imag = -sin(x.real)*sinh(x.imag);
- return r;
-}
-
-PyDoc_STRVAR(c_cos_doc,
-"cos(x)\n"
-"n"
-"Return the cosine of x.");
-
-
-static Py_complex
-c_cosh(Py_complex x)
-{
- Py_complex r;
- r.real = cos(x.imag)*cosh(x.real);
- r.imag = sin(x.imag)*sinh(x.real);
- return r;
-}
-
-PyDoc_STRVAR(c_cosh_doc,
-"cosh(x)\n"
-"n"
-"Return the hyperbolic cosine of x.");
-
-
-static Py_complex
-c_exp(Py_complex x)
-{
- Py_complex r;
- double l = exp(x.real);
- r.real = l*cos(x.imag);
- r.imag = l*sin(x.imag);
- return r;
-}
-
-PyDoc_STRVAR(c_exp_doc,
-"exp(x)\n"
-"\n"
-"Return the exponential value e**x.");
-
-
-static Py_complex
-c_log(Py_complex x)
-{
- Py_complex r;
- double l = hypot(x.real,x.imag);
- r.imag = atan2(x.imag, x.real);
- r.real = log(l);
- return r;
-}
-
-
-static Py_complex
-c_log10(Py_complex x)
-{
- Py_complex r;
- double l = hypot(x.real,x.imag);
- r.imag = atan2(x.imag, x.real)/log(10.);
- r.real = log10(l);
- return r;
-}
-
-PyDoc_STRVAR(c_log10_doc,
-"log10(x)\n"
-"\n"
-"Return the base-10 logarithm of x.");
-
-
-/* internal function not available from Python */
-static Py_complex
-c_prodi(Py_complex x)
-{
- Py_complex r;
- r.real = -x.imag;
- r.imag = x.real;
- return r;
-}
-
-
-static Py_complex
-c_sin(Py_complex x)
-{
- Py_complex r;
- r.real = sin(x.real) * cosh(x.imag);
- r.imag = cos(x.real) * sinh(x.imag);
- return r;
-}
-
-PyDoc_STRVAR(c_sin_doc,
-"sin(x)\n"
-"\n"
-"Return the sine of x.");
-
-
-static Py_complex
-c_sinh(Py_complex x)
-{
- Py_complex r;
- r.real = cos(x.imag) * sinh(x.real);
- r.imag = sin(x.imag) * cosh(x.real);
- return r;
-}
-
-PyDoc_STRVAR(c_sinh_doc,
-"sinh(x)\n"
-"\n"
-"Return the hyperbolic sine of x.");
-
-
-static Py_complex
-c_sqrt(Py_complex x)
-{
- Py_complex r;
- double s,d;
- if (x.real == 0. && x.imag == 0.)
- r = x;
- else {
- s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
- d = 0.5*x.imag/s;
- if (x.real > 0.) {
- r.real = s;
- r.imag = d;
- }
- else if (x.imag >= 0.) {
- r.real = d;
- r.imag = s;
- }
- else {
- r.real = -d;
- r.imag = -s;
- }
- }
- return r;
-}
-
-PyDoc_STRVAR(c_sqrt_doc,
-"sqrt(x)\n"
-"\n"
-"Return the square root of x.");
-
-
-static Py_complex
-c_tan(Py_complex x)
-{
- Py_complex r;
- double sr,cr,shi,chi;
- double rs,is,rc,ic;
- double d;
- sr = sin(x.real);
- cr = cos(x.real);
- shi = sinh(x.imag);
- chi = cosh(x.imag);
- rs = sr * chi;
- is = cr * shi;
- rc = cr * chi;
- ic = -sr * shi;
- d = rc*rc + ic * ic;
- r.real = (rs*rc + is*ic) / d;
- r.imag = (is*rc - rs*ic) / d;
- return r;
-}
-
-PyDoc_STRVAR(c_tan_doc,
-"tan(x)\n"
-"\n"
-"Return the tangent of x.");
-
-
-static Py_complex
-c_tanh(Py_complex x)
-{
- Py_complex r;
- double si,ci,shr,chr;
- double rs,is,rc,ic;
- double d;
- si = sin(x.imag);
- ci = cos(x.imag);
- shr = sinh(x.real);
- chr = cosh(x.real);
- rs = ci * shr;
- is = si * chr;
- rc = ci * chr;
- ic = si * shr;
- d = rc*rc + ic*ic;
- r.real = (rs*rc + is*ic) / d;
- r.imag = (is*rc - rs*ic) / d;
- return r;
-}
-
-PyDoc_STRVAR(c_tanh_doc,
-"tanh(x)\n"
-"\n"
-"Return the hyperbolic tangent of x.");
-
-static PyObject *
-cmath_log(PyObject *self, PyObject *args)
-{
- Py_complex x;
- Py_complex y;
-
- if (!PyArg_ParseTuple(args, "D|D", &x, &y))
- return NULL;
-
- errno = 0;
- PyFPE_START_PROTECT("complex function", return 0)
- x = c_log(x);
- if (PyTuple_GET_SIZE(args) == 2)
- x = c_quot(x, c_log(y));
- PyFPE_END_PROTECT(x)
- if (errno != 0)
- return math_error();
- Py_ADJUST_ERANGE2(x.real, x.imag);
- return PyComplex_FromCComplex(x);
-}
-
-PyDoc_STRVAR(cmath_log_doc,
-"log(x[, base]) -> the logarithm of x to the given base.\n\
-If the base not specified, returns the natural logarithm (base e) of x.");
-
-
-/* And now the glue to make them available from Python: */
-
-static PyObject *
-math_error(void)
-{
- if (errno == EDOM)
- PyErr_SetString(PyExc_ValueError, "math domain error");
- else if (errno == ERANGE)
- PyErr_SetString(PyExc_OverflowError, "math range error");
- else /* Unexpected math error */
- PyErr_SetFromErrno(PyExc_ValueError);
- return NULL;
-}
-
-static PyObject *
-math_1(PyObject *args, Py_complex (*func)(Py_complex))
-{
- Py_complex x;
- if (!PyArg_ParseTuple(args, "D", &x))
- return NULL;
- errno = 0;
- PyFPE_START_PROTECT("complex function", return 0)
- x = (*func)(x);
- PyFPE_END_PROTECT(x)
- Py_ADJUST_ERANGE2(x.real, x.imag);
- if (errno != 0)
- return math_error();
- else
- return PyComplex_FromCComplex(x);
-}
-
-#define FUNC1(stubname, func) \
- static PyObject * stubname(PyObject *self, PyObject *args) { \
- return math_1(args, func); \
- }
-
-FUNC1(cmath_acos, c_acos)
-FUNC1(cmath_acosh, c_acosh)
-FUNC1(cmath_asin, c_asin)
-FUNC1(cmath_asinh, c_asinh)
-FUNC1(cmath_atan, c_atan)
-FUNC1(cmath_atanh, c_atanh)
-FUNC1(cmath_cos, c_cos)
-FUNC1(cmath_cosh, c_cosh)
-FUNC1(cmath_exp, c_exp)
-FUNC1(cmath_log10, c_log10)
-FUNC1(cmath_sin, c_sin)
-FUNC1(cmath_sinh, c_sinh)
-FUNC1(cmath_sqrt, c_sqrt)
-FUNC1(cmath_tan, c_tan)
-FUNC1(cmath_tanh, c_tanh)
-
-
-PyDoc_STRVAR(module_doc,
-"This module is always available. It provides access to mathematical\n"
-"functions for complex numbers.");
-
-static PyMethodDef cmath_methods[] = {
- {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
- {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
- {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
- {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
- {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
- {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
- {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
- {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
- {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
- {"log", cmath_log, METH_VARARGS, cmath_log_doc},
- {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
- {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
- {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
- {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
- {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
- {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
- {NULL, NULL} /* sentinel */
-};
-
-PyMODINIT_FUNC
-initcmath(void)
-{
- PyObject *m;
-
- m = Py_InitModule3("cmath", cmath_methods, module_doc);
- if (m == NULL)
- return;
-
- PyModule_AddObject(m, "pi",
- PyFloat_FromDouble(atan(1.0) * 4.0));
- PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
-}