summaryrefslogtreecommitdiff
path: root/sys/src/cmd/python/Modules/mathmodule.c
diff options
context:
space:
mode:
authorcinap_lenrek <cinap_lenrek@localhost>2011-05-03 11:25:13 +0000
committercinap_lenrek <cinap_lenrek@localhost>2011-05-03 11:25:13 +0000
commit458120dd40db6b4df55a4e96b650e16798ef06a0 (patch)
tree8f82685be24fef97e715c6f5ca4c68d34d5074ee /sys/src/cmd/python/Modules/mathmodule.c
parent3a742c699f6806c1145aea5149bf15de15a0afd7 (diff)
add hg and python
Diffstat (limited to 'sys/src/cmd/python/Modules/mathmodule.c')
-rw-r--r--sys/src/cmd/python/Modules/mathmodule.c376
1 files changed, 376 insertions, 0 deletions
diff --git a/sys/src/cmd/python/Modules/mathmodule.c b/sys/src/cmd/python/Modules/mathmodule.c
new file mode 100644
index 000000000..e7fc6dd70
--- /dev/null
+++ b/sys/src/cmd/python/Modules/mathmodule.c
@@ -0,0 +1,376 @@
+/* Math module -- standard C math library functions, pi and e */
+
+#include "Python.h"
+#include "longintrepr.h" /* just for SHIFT */
+
+#ifndef _MSC_VER
+#ifndef __STDC__
+extern double fmod (double, double);
+extern double frexp (double, int *);
+extern double ldexp (double, int);
+extern double modf (double, double *);
+#endif /* __STDC__ */
+#endif /* _MSC_VER */
+
+/* Call is_error when errno != 0, and where x is the result libm
+ * returned. is_error will usually set up an exception and return
+ * true (1), but may return false (0) without setting up an exception.
+ */
+static int
+is_error(double x)
+{
+ int result = 1; /* presumption of guilt */
+ assert(errno); /* non-zero errno is a precondition for calling */
+ if (errno == EDOM)
+ PyErr_SetString(PyExc_ValueError, "math domain error");
+
+ else if (errno == ERANGE) {
+ /* ANSI C generally requires libm functions to set ERANGE
+ * on overflow, but also generally *allows* them to set
+ * ERANGE on underflow too. There's no consistency about
+ * the latter across platforms.
+ * Alas, C99 never requires that errno be set.
+ * Here we suppress the underflow errors (libm functions
+ * should return a zero on underflow, and +- HUGE_VAL on
+ * overflow, so testing the result for zero suffices to
+ * distinguish the cases).
+ */
+ if (x)
+ PyErr_SetString(PyExc_OverflowError,
+ "math range error");
+ else
+ result = 0;
+ }
+ else
+ /* Unexpected math error */
+ PyErr_SetFromErrno(PyExc_ValueError);
+ return result;
+}
+
+static PyObject *
+math_1(PyObject *args, double (*func) (double), char *argsfmt)
+{
+ double x;
+ if (! PyArg_ParseTuple(args, argsfmt, &x))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("in math_1", return 0)
+ x = (*func)(x);
+ PyFPE_END_PROTECT(x)
+ Py_SET_ERRNO_ON_MATH_ERROR(x);
+ if (errno && is_error(x))
+ return NULL;
+ else
+ return PyFloat_FromDouble(x);
+}
+
+static PyObject *
+math_2(PyObject *args, double (*func) (double, double), char *argsfmt)
+{
+ double x, y;
+ if (! PyArg_ParseTuple(args, argsfmt, &x, &y))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("in math_2", return 0)
+ x = (*func)(x, y);
+ PyFPE_END_PROTECT(x)
+ Py_SET_ERRNO_ON_MATH_ERROR(x);
+ if (errno && is_error(x))
+ return NULL;
+ else
+ return PyFloat_FromDouble(x);
+}
+
+#define FUNC1(funcname, func, docstring) \
+ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+ return math_1(args, func, "d:" #funcname); \
+ }\
+ PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+#define FUNC2(funcname, func, docstring) \
+ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
+ return math_2(args, func, "dd:" #funcname); \
+ }\
+ PyDoc_STRVAR(math_##funcname##_doc, docstring);
+
+FUNC1(acos, acos,
+ "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
+FUNC1(asin, asin,
+ "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
+FUNC1(atan, atan,
+ "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
+FUNC2(atan2, atan2,
+ "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
+ "Unlike atan(y/x), the signs of both x and y are considered.")
+FUNC1(ceil, ceil,
+ "ceil(x)\n\nReturn the ceiling of x as a float.\n"
+ "This is the smallest integral value >= x.")
+FUNC1(cos, cos,
+ "cos(x)\n\nReturn the cosine of x (measured in radians).")
+FUNC1(cosh, cosh,
+ "cosh(x)\n\nReturn the hyperbolic cosine of x.")
+FUNC1(exp, exp,
+ "exp(x)\n\nReturn e raised to the power of x.")
+FUNC1(fabs, fabs,
+ "fabs(x)\n\nReturn the absolute value of the float x.")
+FUNC1(floor, floor,
+ "floor(x)\n\nReturn the floor of x as a float.\n"
+ "This is the largest integral value <= x.")
+FUNC2(fmod, fmod,
+ "fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
+ " x % y may differ.")
+FUNC2(hypot, hypot,
+ "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).")
+FUNC2(pow, pow,
+ "pow(x,y)\n\nReturn x**y (x to the power of y).")
+FUNC1(sin, sin,
+ "sin(x)\n\nReturn the sine of x (measured in radians).")
+FUNC1(sinh, sinh,
+ "sinh(x)\n\nReturn the hyperbolic sine of x.")
+FUNC1(sqrt, sqrt,
+ "sqrt(x)\n\nReturn the square root of x.")
+FUNC1(tan, tan,
+ "tan(x)\n\nReturn the tangent of x (measured in radians).")
+FUNC1(tanh, tanh,
+ "tanh(x)\n\nReturn the hyperbolic tangent of x.")
+
+static PyObject *
+math_frexp(PyObject *self, PyObject *args)
+{
+ double x;
+ int i;
+ if (! PyArg_ParseTuple(args, "d:frexp", &x))
+ return NULL;
+ errno = 0;
+ x = frexp(x, &i);
+ Py_SET_ERRNO_ON_MATH_ERROR(x);
+ if (errno && is_error(x))
+ return NULL;
+ else
+ return Py_BuildValue("(di)", x, i);
+}
+
+PyDoc_STRVAR(math_frexp_doc,
+"frexp(x)\n"
+"\n"
+"Return the mantissa and exponent of x, as pair (m, e).\n"
+"m is a float and e is an int, such that x = m * 2.**e.\n"
+"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
+
+static PyObject *
+math_ldexp(PyObject *self, PyObject *args)
+{
+ double x;
+ int exp;
+ if (! PyArg_ParseTuple(args, "di:ldexp", &x, &exp))
+ return NULL;
+ errno = 0;
+ PyFPE_START_PROTECT("ldexp", return 0)
+ x = ldexp(x, exp);
+ PyFPE_END_PROTECT(x)
+ Py_SET_ERRNO_ON_MATH_ERROR(x);
+ if (errno && is_error(x))
+ return NULL;
+ else
+ return PyFloat_FromDouble(x);
+}
+
+PyDoc_STRVAR(math_ldexp_doc,
+"ldexp(x, i) -> x * (2**i)");
+
+static PyObject *
+math_modf(PyObject *self, PyObject *args)
+{
+ double x, y;
+ if (! PyArg_ParseTuple(args, "d:modf", &x))
+ return NULL;
+ errno = 0;
+ x = modf(x, &y);
+ Py_SET_ERRNO_ON_MATH_ERROR(x);
+ if (errno && is_error(x))
+ return NULL;
+ else
+ return Py_BuildValue("(dd)", x, y);
+}
+
+PyDoc_STRVAR(math_modf_doc,
+"modf(x)\n"
+"\n"
+"Return the fractional and integer parts of x. Both results carry the sign\n"
+"of x. The integer part is returned as a real.");
+
+/* A decent logarithm is easy to compute even for huge longs, but libm can't
+ do that by itself -- loghelper can. func is log or log10, and name is
+ "log" or "log10". Note that overflow isn't possible: a long can contain
+ no more than INT_MAX * SHIFT bits, so has value certainly less than
+ 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
+ small enough to fit in an IEEE single. log and log10 are even smaller.
+*/
+
+static PyObject*
+loghelper(PyObject* args, double (*func)(double), char *format, PyObject *arg)
+{
+ /* If it is long, do it ourselves. */
+ if (PyLong_Check(arg)) {
+ double x;
+ int e;
+ x = _PyLong_AsScaledDouble(arg, &e);
+ if (x <= 0.0) {
+ PyErr_SetString(PyExc_ValueError,
+ "math domain error");
+ return NULL;
+ }
+ /* Value is ~= x * 2**(e*SHIFT), so the log ~=
+ log(x) + log(2) * e * SHIFT.
+ CAUTION: e*SHIFT may overflow using int arithmetic,
+ so force use of double. */
+ x = func(x) + (e * (double)SHIFT) * func(2.0);
+ return PyFloat_FromDouble(x);
+ }
+
+ /* Else let libm handle it by itself. */
+ return math_1(args, func, format);
+}
+
+static PyObject *
+math_log(PyObject *self, PyObject *args)
+{
+ PyObject *arg;
+ PyObject *base = NULL;
+ PyObject *num, *den;
+ PyObject *ans;
+ PyObject *newargs;
+
+ if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
+ return NULL;
+ if (base == NULL)
+ return loghelper(args, log, "d:log", arg);
+
+ newargs = PyTuple_Pack(1, arg);
+ if (newargs == NULL)
+ return NULL;
+ num = loghelper(newargs, log, "d:log", arg);
+ Py_DECREF(newargs);
+ if (num == NULL)
+ return NULL;
+
+ newargs = PyTuple_Pack(1, base);
+ if (newargs == NULL) {
+ Py_DECREF(num);
+ return NULL;
+ }
+ den = loghelper(newargs, log, "d:log", base);
+ Py_DECREF(newargs);
+ if (den == NULL) {
+ Py_DECREF(num);
+ return NULL;
+ }
+
+ ans = PyNumber_Divide(num, den);
+ Py_DECREF(num);
+ Py_DECREF(den);
+ return ans;
+}
+
+PyDoc_STRVAR(math_log_doc,
+"log(x[, base]) -> the logarithm of x to the given base.\n\
+If the base not specified, returns the natural logarithm (base e) of x.");
+
+static PyObject *
+math_log10(PyObject *self, PyObject *args)
+{
+ PyObject *arg;
+
+ if (!PyArg_UnpackTuple(args, "log10", 1, 1, &arg))
+ return NULL;
+ return loghelper(args, log10, "d:log10", arg);
+}
+
+PyDoc_STRVAR(math_log10_doc,
+"log10(x) -> the base 10 logarithm of x.");
+
+static const double degToRad = 3.141592653589793238462643383 / 180.0;
+
+static PyObject *
+math_degrees(PyObject *self, PyObject *args)
+{
+ double x;
+ if (! PyArg_ParseTuple(args, "d:degrees", &x))
+ return NULL;
+ return PyFloat_FromDouble(x / degToRad);
+}
+
+PyDoc_STRVAR(math_degrees_doc,
+"degrees(x) -> converts angle x from radians to degrees");
+
+static PyObject *
+math_radians(PyObject *self, PyObject *args)
+{
+ double x;
+ if (! PyArg_ParseTuple(args, "d:radians", &x))
+ return NULL;
+ return PyFloat_FromDouble(x * degToRad);
+}
+
+PyDoc_STRVAR(math_radians_doc,
+"radians(x) -> converts angle x from degrees to radians");
+
+static PyMethodDef math_methods[] = {
+ {"acos", math_acos, METH_VARARGS, math_acos_doc},
+ {"asin", math_asin, METH_VARARGS, math_asin_doc},
+ {"atan", math_atan, METH_VARARGS, math_atan_doc},
+ {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
+ {"ceil", math_ceil, METH_VARARGS, math_ceil_doc},
+ {"cos", math_cos, METH_VARARGS, math_cos_doc},
+ {"cosh", math_cosh, METH_VARARGS, math_cosh_doc},
+ {"degrees", math_degrees, METH_VARARGS, math_degrees_doc},
+ {"exp", math_exp, METH_VARARGS, math_exp_doc},
+ {"fabs", math_fabs, METH_VARARGS, math_fabs_doc},
+ {"floor", math_floor, METH_VARARGS, math_floor_doc},
+ {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
+ {"frexp", math_frexp, METH_VARARGS, math_frexp_doc},
+ {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
+ {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
+ {"log", math_log, METH_VARARGS, math_log_doc},
+ {"log10", math_log10, METH_VARARGS, math_log10_doc},
+ {"modf", math_modf, METH_VARARGS, math_modf_doc},
+ {"pow", math_pow, METH_VARARGS, math_pow_doc},
+ {"radians", math_radians, METH_VARARGS, math_radians_doc},
+ {"sin", math_sin, METH_VARARGS, math_sin_doc},
+ {"sinh", math_sinh, METH_VARARGS, math_sinh_doc},
+ {"sqrt", math_sqrt, METH_VARARGS, math_sqrt_doc},
+ {"tan", math_tan, METH_VARARGS, math_tan_doc},
+ {"tanh", math_tanh, METH_VARARGS, math_tanh_doc},
+ {NULL, NULL} /* sentinel */
+};
+
+
+PyDoc_STRVAR(module_doc,
+"This module is always available. It provides access to the\n"
+"mathematical functions defined by the C standard.");
+
+PyMODINIT_FUNC
+initmath(void)
+{
+ PyObject *m, *d, *v;
+
+ m = Py_InitModule3("math", math_methods, module_doc);
+ if (m == NULL)
+ goto finally;
+ d = PyModule_GetDict(m);
+
+ if (!(v = PyFloat_FromDouble(atan(1.0) * 4.0)))
+ goto finally;
+ if (PyDict_SetItemString(d, "pi", v) < 0)
+ goto finally;
+ Py_DECREF(v);
+
+ if (!(v = PyFloat_FromDouble(exp(1.0))))
+ goto finally;
+ if (PyDict_SetItemString(d, "e", v) < 0)
+ goto finally;
+ Py_DECREF(v);
+
+ finally:
+ return;
+}