diff options
author | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
---|---|---|
committer | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
commit | a73a964e51247ed169d322c725a3a18859f109a3 (patch) | |
tree | 3f752d117274d444bda44e85609aeac1acf313f3 /sys/src/cmd/python/Objects/complexobject.c | |
parent | e64efe273fcb921a61bf27d33b230c4e64fcd425 (diff) |
python, hg: tow outside the environment.
they've served us well, and can ride off into the sunset.
Diffstat (limited to 'sys/src/cmd/python/Objects/complexobject.c')
-rw-r--r-- | sys/src/cmd/python/Objects/complexobject.c | 1031 |
1 files changed, 0 insertions, 1031 deletions
diff --git a/sys/src/cmd/python/Objects/complexobject.c b/sys/src/cmd/python/Objects/complexobject.c deleted file mode 100644 index 4de1fb658..000000000 --- a/sys/src/cmd/python/Objects/complexobject.c +++ /dev/null @@ -1,1031 +0,0 @@ - -/* Complex object implementation */ - -/* Borrows heavily from floatobject.c */ - -/* Submitted by Jim Hugunin */ - -#include "Python.h" -#include "structmember.h" - -#ifndef WITHOUT_COMPLEX - -/* Precisions used by repr() and str(), respectively. - - The repr() precision (17 significant decimal digits) is the minimal number - that is guaranteed to have enough precision so that if the number is read - back in the exact same binary value is recreated. This is true for IEEE - floating point by design, and also happens to work for all other modern - hardware. - - The str() precision is chosen so that in most cases, the rounding noise - created by various operations is suppressed, while giving plenty of - precision for practical use. -*/ - -#define PREC_REPR 17 -#define PREC_STR 12 - -/* elementary operations on complex numbers */ - -static Py_complex c_1 = {1., 0.}; - -Py_complex -c_sum(Py_complex a, Py_complex b) -{ - Py_complex r; - r.real = a.real + b.real; - r.imag = a.imag + b.imag; - return r; -} - -Py_complex -c_diff(Py_complex a, Py_complex b) -{ - Py_complex r; - r.real = a.real - b.real; - r.imag = a.imag - b.imag; - return r; -} - -Py_complex -c_neg(Py_complex a) -{ - Py_complex r; - r.real = -a.real; - r.imag = -a.imag; - return r; -} - -Py_complex -c_prod(Py_complex a, Py_complex b) -{ - Py_complex r; - r.real = a.real*b.real - a.imag*b.imag; - r.imag = a.real*b.imag + a.imag*b.real; - return r; -} - -Py_complex -c_quot(Py_complex a, Py_complex b) -{ - /****************************************************************** - This was the original algorithm. It's grossly prone to spurious - overflow and underflow errors. It also merrily divides by 0 despite - checking for that(!). The code still serves a doc purpose here, as - the algorithm following is a simple by-cases transformation of this - one: - - Py_complex r; - double d = b.real*b.real + b.imag*b.imag; - if (d == 0.) - errno = EDOM; - r.real = (a.real*b.real + a.imag*b.imag)/d; - r.imag = (a.imag*b.real - a.real*b.imag)/d; - return r; - ******************************************************************/ - - /* This algorithm is better, and is pretty obvious: first divide the - * numerators and denominator by whichever of {b.real, b.imag} has - * larger magnitude. The earliest reference I found was to CACM - * Algorithm 116 (Complex Division, Robert L. Smith, Stanford - * University). As usual, though, we're still ignoring all IEEE - * endcases. - */ - Py_complex r; /* the result */ - const double abs_breal = b.real < 0 ? -b.real : b.real; - const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; - - if (abs_breal >= abs_bimag) { - /* divide tops and bottom by b.real */ - if (abs_breal == 0.0) { - errno = EDOM; - r.real = r.imag = 0.0; - } - else { - const double ratio = b.imag / b.real; - const double denom = b.real + b.imag * ratio; - r.real = (a.real + a.imag * ratio) / denom; - r.imag = (a.imag - a.real * ratio) / denom; - } - } - else { - /* divide tops and bottom by b.imag */ - const double ratio = b.real / b.imag; - const double denom = b.real * ratio + b.imag; - assert(b.imag != 0.0); - r.real = (a.real * ratio + a.imag) / denom; - r.imag = (a.imag * ratio - a.real) / denom; - } - return r; -} - -Py_complex -c_pow(Py_complex a, Py_complex b) -{ - Py_complex r; - double vabs,len,at,phase; - if (b.real == 0. && b.imag == 0.) { - r.real = 1.; - r.imag = 0.; - } - else if (a.real == 0. && a.imag == 0.) { - if (b.imag != 0. || b.real < 0.) - errno = EDOM; - r.real = 0.; - r.imag = 0.; - } - else { - vabs = hypot(a.real,a.imag); - len = pow(vabs,b.real); - at = atan2(a.imag, a.real); - phase = at*b.real; - if (b.imag != 0.0) { - len /= exp(at*b.imag); - phase += b.imag*log(vabs); - } - r.real = len*cos(phase); - r.imag = len*sin(phase); - } - return r; -} - -static Py_complex -c_powu(Py_complex x, long n) -{ - Py_complex r, p; - long mask = 1; - r = c_1; - p = x; - while (mask > 0 && n >= mask) { - if (n & mask) - r = c_prod(r,p); - mask <<= 1; - p = c_prod(p,p); - } - return r; -} - -static Py_complex -c_powi(Py_complex x, long n) -{ - Py_complex cn; - - if (n > 100 || n < -100) { - cn.real = (double) n; - cn.imag = 0.; - return c_pow(x,cn); - } - else if (n > 0) - return c_powu(x,n); - else - return c_quot(c_1,c_powu(x,-n)); - -} - -static PyObject * -complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) -{ - PyObject *op; - - op = type->tp_alloc(type, 0); - if (op != NULL) - ((PyComplexObject *)op)->cval = cval; - return op; -} - -PyObject * -PyComplex_FromCComplex(Py_complex cval) -{ - register PyComplexObject *op; - - /* Inline PyObject_New */ - op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); - if (op == NULL) - return PyErr_NoMemory(); - PyObject_INIT(op, &PyComplex_Type); - op->cval = cval; - return (PyObject *) op; -} - -static PyObject * -complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) -{ - Py_complex c; - c.real = real; - c.imag = imag; - return complex_subtype_from_c_complex(type, c); -} - -PyObject * -PyComplex_FromDoubles(double real, double imag) -{ - Py_complex c; - c.real = real; - c.imag = imag; - return PyComplex_FromCComplex(c); -} - -double -PyComplex_RealAsDouble(PyObject *op) -{ - if (PyComplex_Check(op)) { - return ((PyComplexObject *)op)->cval.real; - } - else { - return PyFloat_AsDouble(op); - } -} - -double -PyComplex_ImagAsDouble(PyObject *op) -{ - if (PyComplex_Check(op)) { - return ((PyComplexObject *)op)->cval.imag; - } - else { - return 0.0; - } -} - -Py_complex -PyComplex_AsCComplex(PyObject *op) -{ - Py_complex cv; - if (PyComplex_Check(op)) { - return ((PyComplexObject *)op)->cval; - } - else { - cv.real = PyFloat_AsDouble(op); - cv.imag = 0.; - return cv; - } -} - -static void -complex_dealloc(PyObject *op) -{ - op->ob_type->tp_free(op); -} - - -static void -complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision) -{ - char format[32]; - if (v->cval.real == 0.) { - PyOS_snprintf(format, sizeof(format), "%%.%ig", precision); - PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag); - strncat(buf, "j", 1); - } else { - char re[64], im[64]; - /* Format imaginary part with sign, real part without */ - PyOS_snprintf(format, sizeof(format), "%%.%ig", precision); - PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real); - PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision); - PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag); - PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im); - } -} - -static int -complex_print(PyComplexObject *v, FILE *fp, int flags) -{ - char buf[100]; - complex_to_buf(buf, sizeof(buf), v, - (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); - fputs(buf, fp); - return 0; -} - -static PyObject * -complex_repr(PyComplexObject *v) -{ - char buf[100]; - complex_to_buf(buf, sizeof(buf), v, PREC_REPR); - return PyString_FromString(buf); -} - -static PyObject * -complex_str(PyComplexObject *v) -{ - char buf[100]; - complex_to_buf(buf, sizeof(buf), v, PREC_STR); - return PyString_FromString(buf); -} - -static long -complex_hash(PyComplexObject *v) -{ - long hashreal, hashimag, combined; - hashreal = _Py_HashDouble(v->cval.real); - if (hashreal == -1) - return -1; - hashimag = _Py_HashDouble(v->cval.imag); - if (hashimag == -1) - return -1; - /* Note: if the imaginary part is 0, hashimag is 0 now, - * so the following returns hashreal unchanged. This is - * important because numbers of different types that - * compare equal must have the same hash value, so that - * hash(x + 0*j) must equal hash(x). - */ - combined = hashreal + 1000003 * hashimag; - if (combined == -1) - combined = -2; - return combined; -} - -static PyObject * -complex_add(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex result; - PyFPE_START_PROTECT("complex_add", return 0) - result = c_sum(v->cval,w->cval); - PyFPE_END_PROTECT(result) - return PyComplex_FromCComplex(result); -} - -static PyObject * -complex_sub(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex result; - PyFPE_START_PROTECT("complex_sub", return 0) - result = c_diff(v->cval,w->cval); - PyFPE_END_PROTECT(result) - return PyComplex_FromCComplex(result); -} - -static PyObject * -complex_mul(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex result; - PyFPE_START_PROTECT("complex_mul", return 0) - result = c_prod(v->cval,w->cval); - PyFPE_END_PROTECT(result) - return PyComplex_FromCComplex(result); -} - -static PyObject * -complex_div(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex quot; - PyFPE_START_PROTECT("complex_div", return 0) - errno = 0; - quot = c_quot(v->cval,w->cval); - PyFPE_END_PROTECT(quot) - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); - return NULL; - } - return PyComplex_FromCComplex(quot); -} - -static PyObject * -complex_classic_div(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex quot; - - if (Py_DivisionWarningFlag >= 2 && - PyErr_Warn(PyExc_DeprecationWarning, - "classic complex division") < 0) - return NULL; - - PyFPE_START_PROTECT("complex_classic_div", return 0) - errno = 0; - quot = c_quot(v->cval,w->cval); - PyFPE_END_PROTECT(quot) - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); - return NULL; - } - return PyComplex_FromCComplex(quot); -} - -static PyObject * -complex_remainder(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex div, mod; - - if (PyErr_Warn(PyExc_DeprecationWarning, - "complex divmod(), // and % are deprecated") < 0) - return NULL; - - errno = 0; - div = c_quot(v->cval,w->cval); /* The raw divisor value. */ - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder"); - return NULL; - } - div.real = floor(div.real); /* Use the floor of the real part. */ - div.imag = 0.0; - mod = c_diff(v->cval, c_prod(w->cval, div)); - - return PyComplex_FromCComplex(mod); -} - - -static PyObject * -complex_divmod(PyComplexObject *v, PyComplexObject *w) -{ - Py_complex div, mod; - PyObject *d, *m, *z; - - if (PyErr_Warn(PyExc_DeprecationWarning, - "complex divmod(), // and % are deprecated") < 0) - return NULL; - - errno = 0; - div = c_quot(v->cval,w->cval); /* The raw divisor value. */ - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()"); - return NULL; - } - div.real = floor(div.real); /* Use the floor of the real part. */ - div.imag = 0.0; - mod = c_diff(v->cval, c_prod(w->cval, div)); - d = PyComplex_FromCComplex(div); - m = PyComplex_FromCComplex(mod); - z = PyTuple_Pack(2, d, m); - Py_XDECREF(d); - Py_XDECREF(m); - return z; -} - -static PyObject * -complex_pow(PyComplexObject *v, PyObject *w, PyComplexObject *z) -{ - Py_complex p; - Py_complex exponent; - long int_exponent; - - if ((PyObject *)z!=Py_None) { - PyErr_SetString(PyExc_ValueError, "complex modulo"); - return NULL; - } - PyFPE_START_PROTECT("complex_pow", return 0) - errno = 0; - exponent = ((PyComplexObject*)w)->cval; - int_exponent = (long)exponent.real; - if (exponent.imag == 0. && exponent.real == int_exponent) - p = c_powi(v->cval,int_exponent); - else - p = c_pow(v->cval,exponent); - - PyFPE_END_PROTECT(p) - Py_ADJUST_ERANGE2(p.real, p.imag); - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, - "0.0 to a negative or complex power"); - return NULL; - } - else if (errno == ERANGE) { - PyErr_SetString(PyExc_OverflowError, - "complex exponentiation"); - return NULL; - } - return PyComplex_FromCComplex(p); -} - -static PyObject * -complex_int_div(PyComplexObject *v, PyComplexObject *w) -{ - PyObject *t, *r; - - t = complex_divmod(v, w); - if (t != NULL) { - r = PyTuple_GET_ITEM(t, 0); - Py_INCREF(r); - Py_DECREF(t); - return r; - } - return NULL; -} - -static PyObject * -complex_neg(PyComplexObject *v) -{ - Py_complex neg; - neg.real = -v->cval.real; - neg.imag = -v->cval.imag; - return PyComplex_FromCComplex(neg); -} - -static PyObject * -complex_pos(PyComplexObject *v) -{ - if (PyComplex_CheckExact(v)) { - Py_INCREF(v); - return (PyObject *)v; - } - else - return PyComplex_FromCComplex(v->cval); -} - -static PyObject * -complex_abs(PyComplexObject *v) -{ - double result; - PyFPE_START_PROTECT("complex_abs", return 0) - result = hypot(v->cval.real,v->cval.imag); - PyFPE_END_PROTECT(result) - return PyFloat_FromDouble(result); -} - -static int -complex_nonzero(PyComplexObject *v) -{ - return v->cval.real != 0.0 || v->cval.imag != 0.0; -} - -static int -complex_coerce(PyObject **pv, PyObject **pw) -{ - Py_complex cval; - cval.imag = 0.; - if (PyInt_Check(*pw)) { - cval.real = (double)PyInt_AsLong(*pw); - *pw = PyComplex_FromCComplex(cval); - Py_INCREF(*pv); - return 0; - } - else if (PyLong_Check(*pw)) { - cval.real = PyLong_AsDouble(*pw); - if (cval.real == -1.0 && PyErr_Occurred()) - return -1; - *pw = PyComplex_FromCComplex(cval); - Py_INCREF(*pv); - return 0; - } - else if (PyFloat_Check(*pw)) { - cval.real = PyFloat_AsDouble(*pw); - *pw = PyComplex_FromCComplex(cval); - Py_INCREF(*pv); - return 0; - } - else if (PyComplex_Check(*pw)) { - Py_INCREF(*pv); - Py_INCREF(*pw); - return 0; - } - return 1; /* Can't do it */ -} - -static PyObject * -complex_richcompare(PyObject *v, PyObject *w, int op) -{ - int c; - Py_complex i, j; - PyObject *res; - - c = PyNumber_CoerceEx(&v, &w); - if (c < 0) - return NULL; - if (c > 0) { - Py_INCREF(Py_NotImplemented); - return Py_NotImplemented; - } - /* Make sure both arguments are complex. */ - if (!(PyComplex_Check(v) && PyComplex_Check(w))) { - Py_DECREF(v); - Py_DECREF(w); - Py_INCREF(Py_NotImplemented); - return Py_NotImplemented; - } - - i = ((PyComplexObject *)v)->cval; - j = ((PyComplexObject *)w)->cval; - Py_DECREF(v); - Py_DECREF(w); - - if (op != Py_EQ && op != Py_NE) { - PyErr_SetString(PyExc_TypeError, - "no ordering relation is defined for complex numbers"); - return NULL; - } - - if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) - res = Py_True; - else - res = Py_False; - - Py_INCREF(res); - return res; -} - -static PyObject * -complex_int(PyObject *v) -{ - PyErr_SetString(PyExc_TypeError, - "can't convert complex to int; use int(abs(z))"); - return NULL; -} - -static PyObject * -complex_long(PyObject *v) -{ - PyErr_SetString(PyExc_TypeError, - "can't convert complex to long; use long(abs(z))"); - return NULL; -} - -static PyObject * -complex_float(PyObject *v) -{ - PyErr_SetString(PyExc_TypeError, - "can't convert complex to float; use abs(z)"); - return NULL; -} - -static PyObject * -complex_conjugate(PyObject *self) -{ - Py_complex c; - c = ((PyComplexObject *)self)->cval; - c.imag = -c.imag; - return PyComplex_FromCComplex(c); -} - -static PyObject * -complex_getnewargs(PyComplexObject *v) -{ - return Py_BuildValue("(D)", &v->cval); -} - -static PyMethodDef complex_methods[] = { - {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS}, - {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS}, - {NULL, NULL} /* sentinel */ -}; - -static PyMemberDef complex_members[] = { - {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, - "the real part of a complex number"}, - {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, - "the imaginary part of a complex number"}, - {0}, -}; - -static PyObject * -complex_subtype_from_string(PyTypeObject *type, PyObject *v) -{ - const char *s, *start; - char *end; - double x=0.0, y=0.0, z; - int got_re=0, got_im=0, done=0; - int digit_or_dot; - int sw_error=0; - int sign; - char buffer[256]; /* For errors */ -#ifdef Py_USING_UNICODE - char s_buffer[256]; -#endif - Py_ssize_t len; - - if (PyString_Check(v)) { - s = PyString_AS_STRING(v); - len = PyString_GET_SIZE(v); - } -#ifdef Py_USING_UNICODE - else if (PyUnicode_Check(v)) { - if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) { - PyErr_SetString(PyExc_ValueError, - "complex() literal too large to convert"); - return NULL; - } - if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), - PyUnicode_GET_SIZE(v), - s_buffer, - NULL)) - return NULL; - s = s_buffer; - len = strlen(s); - } -#endif - else if (PyObject_AsCharBuffer(v, &s, &len)) { - PyErr_SetString(PyExc_TypeError, - "complex() arg is not a string"); - return NULL; - } - - /* position on first nonblank */ - start = s; - while (*s && isspace(Py_CHARMASK(*s))) - s++; - if (s[0] == '\0') { - PyErr_SetString(PyExc_ValueError, - "complex() arg is an empty string"); - return NULL; - } - - z = -1.0; - sign = 1; - do { - - switch (*s) { - - case '\0': - if (s-start != len) { - PyErr_SetString( - PyExc_ValueError, - "complex() arg contains a null byte"); - return NULL; - } - if(!done) sw_error=1; - break; - - case '-': - sign = -1; - /* Fallthrough */ - case '+': - if (done) sw_error=1; - s++; - if ( *s=='\0'||*s=='+'||*s=='-' || - isspace(Py_CHARMASK(*s)) ) sw_error=1; - break; - - case 'J': - case 'j': - if (got_im || done) { - sw_error = 1; - break; - } - if (z<0.0) { - y=sign; - } - else{ - y=sign*z; - } - got_im=1; - s++; - if (*s!='+' && *s!='-' ) - done=1; - break; - - default: - if (isspace(Py_CHARMASK(*s))) { - while (*s && isspace(Py_CHARMASK(*s))) - s++; - if (s[0] != '\0') - sw_error=1; - else - done = 1; - break; - } - digit_or_dot = - (*s=='.' || isdigit(Py_CHARMASK(*s))); - if (done||!digit_or_dot) { - sw_error=1; - break; - } - errno = 0; - PyFPE_START_PROTECT("strtod", return 0) - z = PyOS_ascii_strtod(s, &end) ; - PyFPE_END_PROTECT(z) - if (errno != 0) { - PyOS_snprintf(buffer, sizeof(buffer), - "float() out of range: %.150s", s); - PyErr_SetString( - PyExc_ValueError, - buffer); - return NULL; - } - s=end; - if (*s=='J' || *s=='j') { - - break; - } - if (got_re) { - sw_error=1; - break; - } - - /* accept a real part */ - x=sign*z; - got_re=1; - if (got_im) done=1; - z = -1.0; - sign = 1; - break; - - } /* end of switch */ - - } while (s - start < len && !sw_error); - - if (sw_error) { - PyErr_SetString(PyExc_ValueError, - "complex() arg is a malformed string"); - return NULL; - } - - return complex_subtype_from_doubles(type, x, y); -} - -static PyObject * -complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds) -{ - PyObject *r, *i, *tmp, *f; - PyNumberMethods *nbr, *nbi = NULL; - Py_complex cr, ci; - int own_r = 0; - static PyObject *complexstr; - static char *kwlist[] = {"real", "imag", 0}; - - r = Py_False; - i = NULL; - if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, - &r, &i)) - return NULL; - - /* Special-case for single argument that is already complex */ - if (PyComplex_CheckExact(r) && i == NULL && - type == &PyComplex_Type) { - /* Note that we can't know whether it's safe to return - a complex *subclass* instance as-is, hence the restriction - to exact complexes here. */ - Py_INCREF(r); - return r; - } - if (PyString_Check(r) || PyUnicode_Check(r)) { - if (i != NULL) { - PyErr_SetString(PyExc_TypeError, - "complex() can't take second arg" - " if first is a string"); - return NULL; - } - return complex_subtype_from_string(type, r); - } - if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) { - PyErr_SetString(PyExc_TypeError, - "complex() second arg can't be a string"); - return NULL; - } - - /* XXX Hack to support classes with __complex__ method */ - if (complexstr == NULL) { - complexstr = PyString_InternFromString("__complex__"); - if (complexstr == NULL) - return NULL; - } - f = PyObject_GetAttr(r, complexstr); - if (f == NULL) - PyErr_Clear(); - else { - PyObject *args = PyTuple_New(0); - if (args == NULL) - return NULL; - r = PyEval_CallObject(f, args); - Py_DECREF(args); - Py_DECREF(f); - if (r == NULL) - return NULL; - own_r = 1; - } - nbr = r->ob_type->tp_as_number; - if (i != NULL) - nbi = i->ob_type->tp_as_number; - if (nbr == NULL || nbr->nb_float == NULL || - ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) { - PyErr_SetString(PyExc_TypeError, - "complex() argument must be a string or a number"); - if (own_r) { - Py_DECREF(r); - } - return NULL; - } - if (PyComplex_Check(r)) { - /* Note that if r is of a complex subtype, we're only - retaining its real & imag parts here, and the return - value is (properly) of the builtin complex type. */ - cr = ((PyComplexObject*)r)->cval; - if (own_r) { - Py_DECREF(r); - } - } - else { - tmp = PyNumber_Float(r); - if (own_r) { - Py_DECREF(r); - } - if (tmp == NULL) - return NULL; - if (!PyFloat_Check(tmp)) { - PyErr_SetString(PyExc_TypeError, - "float(r) didn't return a float"); - Py_DECREF(tmp); - return NULL; - } - cr.real = PyFloat_AsDouble(tmp); - Py_DECREF(tmp); - cr.imag = 0.0; - } - if (i == NULL) { - ci.real = 0.0; - ci.imag = 0.0; - } - else if (PyComplex_Check(i)) - ci = ((PyComplexObject*)i)->cval; - else { - tmp = (*nbi->nb_float)(i); - if (tmp == NULL) - return NULL; - ci.real = PyFloat_AsDouble(tmp); - Py_DECREF(tmp); - ci.imag = 0.; - } - cr.real -= ci.imag; - cr.imag += ci.real; - return complex_subtype_from_c_complex(type, cr); -} - -PyDoc_STRVAR(complex_doc, -"complex(real[, imag]) -> complex number\n" -"\n" -"Create a complex number from a real part and an optional imaginary part.\n" -"This is equivalent to (real + imag*1j) where imag defaults to 0."); - -static PyNumberMethods complex_as_number = { - (binaryfunc)complex_add, /* nb_add */ - (binaryfunc)complex_sub, /* nb_subtract */ - (binaryfunc)complex_mul, /* nb_multiply */ - (binaryfunc)complex_classic_div, /* nb_divide */ - (binaryfunc)complex_remainder, /* nb_remainder */ - (binaryfunc)complex_divmod, /* nb_divmod */ - (ternaryfunc)complex_pow, /* nb_power */ - (unaryfunc)complex_neg, /* nb_negative */ - (unaryfunc)complex_pos, /* nb_positive */ - (unaryfunc)complex_abs, /* nb_absolute */ - (inquiry)complex_nonzero, /* nb_nonzero */ - 0, /* nb_invert */ - 0, /* nb_lshift */ - 0, /* nb_rshift */ - 0, /* nb_and */ - 0, /* nb_xor */ - 0, /* nb_or */ - complex_coerce, /* nb_coerce */ - complex_int, /* nb_int */ - complex_long, /* nb_long */ - complex_float, /* nb_float */ - 0, /* nb_oct */ - 0, /* nb_hex */ - 0, /* nb_inplace_add */ - 0, /* nb_inplace_subtract */ - 0, /* nb_inplace_multiply*/ - 0, /* nb_inplace_divide */ - 0, /* nb_inplace_remainder */ - 0, /* nb_inplace_power */ - 0, /* nb_inplace_lshift */ - 0, /* nb_inplace_rshift */ - 0, /* nb_inplace_and */ - 0, /* nb_inplace_xor */ - 0, /* nb_inplace_or */ - (binaryfunc)complex_int_div, /* nb_floor_divide */ - (binaryfunc)complex_div, /* nb_true_divide */ - 0, /* nb_inplace_floor_divide */ - 0, /* nb_inplace_true_divide */ -}; - -PyTypeObject PyComplex_Type = { - PyObject_HEAD_INIT(&PyType_Type) - 0, - "complex", - sizeof(PyComplexObject), - 0, - complex_dealloc, /* tp_dealloc */ - (printfunc)complex_print, /* tp_print */ - 0, /* tp_getattr */ - 0, /* tp_setattr */ - 0, /* tp_compare */ - (reprfunc)complex_repr, /* tp_repr */ - &complex_as_number, /* tp_as_number */ - 0, /* tp_as_sequence */ - 0, /* tp_as_mapping */ - (hashfunc)complex_hash, /* tp_hash */ - 0, /* tp_call */ - (reprfunc)complex_str, /* tp_str */ - PyObject_GenericGetAttr, /* tp_getattro */ - 0, /* tp_setattro */ - 0, /* tp_as_buffer */ - Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ - complex_doc, /* tp_doc */ - 0, /* tp_traverse */ - 0, /* tp_clear */ - complex_richcompare, /* tp_richcompare */ - 0, /* tp_weaklistoffset */ - 0, /* tp_iter */ - 0, /* tp_iternext */ - complex_methods, /* tp_methods */ - complex_members, /* tp_members */ - 0, /* tp_getset */ - 0, /* tp_base */ - 0, /* tp_dict */ - 0, /* tp_descr_get */ - 0, /* tp_descr_set */ - 0, /* tp_dictoffset */ - 0, /* tp_init */ - PyType_GenericAlloc, /* tp_alloc */ - complex_new, /* tp_new */ - PyObject_Del, /* tp_free */ -}; - -#endif |