diff options
author | cinap_lenrek <cinap_lenrek@localhost> | 2011-05-03 11:25:13 +0000 |
---|---|---|
committer | cinap_lenrek <cinap_lenrek@localhost> | 2011-05-03 11:25:13 +0000 |
commit | 458120dd40db6b4df55a4e96b650e16798ef06a0 (patch) | |
tree | 8f82685be24fef97e715c6f5ca4c68d34d5074ee /sys/src/cmd/python/Objects/floatobject.c | |
parent | 3a742c699f6806c1145aea5149bf15de15a0afd7 (diff) |
add hg and python
Diffstat (limited to 'sys/src/cmd/python/Objects/floatobject.c')
-rw-r--r-- | sys/src/cmd/python/Objects/floatobject.c | 1748 |
1 files changed, 1748 insertions, 0 deletions
diff --git a/sys/src/cmd/python/Objects/floatobject.c b/sys/src/cmd/python/Objects/floatobject.c new file mode 100644 index 000000000..2087ceba8 --- /dev/null +++ b/sys/src/cmd/python/Objects/floatobject.c @@ -0,0 +1,1748 @@ + +/* Float object implementation */ + +/* XXX There should be overflow checks here, but it's hard to check + for any kind of float exception without losing portability. */ + +#include "Python.h" + +#include <ctype.h> + +#if !defined(__STDC__) +extern double fmod(double, double); +extern double pow(double, double); +#endif + +/* Special free list -- see comments for same code in intobject.c. */ +#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */ +#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */ +#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject)) + +struct _floatblock { + struct _floatblock *next; + PyFloatObject objects[N_FLOATOBJECTS]; +}; + +typedef struct _floatblock PyFloatBlock; + +static PyFloatBlock *block_list = NULL; +static PyFloatObject *free_list = NULL; + +static PyFloatObject * +fill_free_list(void) +{ + PyFloatObject *p, *q; + /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */ + p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock)); + if (p == NULL) + return (PyFloatObject *) PyErr_NoMemory(); + ((PyFloatBlock *)p)->next = block_list; + block_list = (PyFloatBlock *)p; + p = &((PyFloatBlock *)p)->objects[0]; + q = p + N_FLOATOBJECTS; + while (--q > p) + q->ob_type = (struct _typeobject *)(q-1); + q->ob_type = NULL; + return p + N_FLOATOBJECTS - 1; +} + +PyObject * +PyFloat_FromDouble(double fval) +{ + register PyFloatObject *op; + if (free_list == NULL) { + if ((free_list = fill_free_list()) == NULL) + return NULL; + } + /* Inline PyObject_New */ + op = free_list; + free_list = (PyFloatObject *)op->ob_type; + PyObject_INIT(op, &PyFloat_Type); + op->ob_fval = fval; + return (PyObject *) op; +} + +/************************************************************************** +RED_FLAG 22-Sep-2000 tim +PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG, + +1. If v was a regular string, *pend was set to point to its terminating + null byte. That's useless (the caller can find that without any + help from this function!). + +2. If v was a Unicode string, or an object convertible to a character + buffer, *pend was set to point into stack trash (the auto temp + vector holding the character buffer). That was downright dangerous. + +Since we can't change the interface of a public API function, pend is +still supported but now *officially* useless: if pend is not NULL, +*pend is set to NULL. +**************************************************************************/ +PyObject * +PyFloat_FromString(PyObject *v, char **pend) +{ + const char *s, *last, *end; + double x; + char buffer[256]; /* for errors */ +#ifdef Py_USING_UNICODE + char s_buffer[256]; /* for objects convertible to a char buffer */ +#endif + Py_ssize_t len; + + if (pend) + *pend = NULL; + if (PyString_Check(v)) { + s = PyString_AS_STRING(v); + len = PyString_GET_SIZE(v); + } +#ifdef Py_USING_UNICODE + else if (PyUnicode_Check(v)) { + if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) { + PyErr_SetString(PyExc_ValueError, + "Unicode float() literal too long to convert"); + return NULL; + } + if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), + PyUnicode_GET_SIZE(v), + s_buffer, + NULL)) + return NULL; + s = s_buffer; + len = strlen(s); + } +#endif + else if (PyObject_AsCharBuffer(v, &s, &len)) { + PyErr_SetString(PyExc_TypeError, + "float() argument must be a string or a number"); + return NULL; + } + + last = s + len; + while (*s && isspace(Py_CHARMASK(*s))) + s++; + if (*s == '\0') { + PyErr_SetString(PyExc_ValueError, "empty string for float()"); + return NULL; + } + /* We don't care about overflow or underflow. If the platform supports + * them, infinities and signed zeroes (on underflow) are fine. + * However, strtod can return 0 for denormalized numbers, where atof + * does not. So (alas!) we special-case a zero result. Note that + * whether strtod sets errno on underflow is not defined, so we can't + * key off errno. + */ + PyFPE_START_PROTECT("strtod", return NULL) + x = PyOS_ascii_strtod(s, (char **)&end); + PyFPE_END_PROTECT(x) + errno = 0; + /* Believe it or not, Solaris 2.6 can move end *beyond* the null + byte at the end of the string, when the input is inf(inity). */ + if (end > last) + end = last; + if (end == s) { + PyOS_snprintf(buffer, sizeof(buffer), + "invalid literal for float(): %.200s", s); + PyErr_SetString(PyExc_ValueError, buffer); + return NULL; + } + /* Since end != s, the platform made *some* kind of sense out + of the input. Trust it. */ + while (*end && isspace(Py_CHARMASK(*end))) + end++; + if (*end != '\0') { + PyOS_snprintf(buffer, sizeof(buffer), + "invalid literal for float(): %.200s", s); + PyErr_SetString(PyExc_ValueError, buffer); + return NULL; + } + else if (end != last) { + PyErr_SetString(PyExc_ValueError, + "null byte in argument for float()"); + return NULL; + } + if (x == 0.0) { + /* See above -- may have been strtod being anal + about denorms. */ + PyFPE_START_PROTECT("atof", return NULL) + x = PyOS_ascii_atof(s); + PyFPE_END_PROTECT(x) + errno = 0; /* whether atof ever set errno is undefined */ + } + return PyFloat_FromDouble(x); +} + +static void +float_dealloc(PyFloatObject *op) +{ + if (PyFloat_CheckExact(op)) { + op->ob_type = (struct _typeobject *)free_list; + free_list = op; + } + else + op->ob_type->tp_free((PyObject *)op); +} + +double +PyFloat_AsDouble(PyObject *op) +{ + PyNumberMethods *nb; + PyFloatObject *fo; + double val; + + if (op && PyFloat_Check(op)) + return PyFloat_AS_DOUBLE((PyFloatObject*) op); + + if (op == NULL) { + PyErr_BadArgument(); + return -1; + } + + if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) { + PyErr_SetString(PyExc_TypeError, "a float is required"); + return -1; + } + + fo = (PyFloatObject*) (*nb->nb_float) (op); + if (fo == NULL) + return -1; + if (!PyFloat_Check(fo)) { + PyErr_SetString(PyExc_TypeError, + "nb_float should return float object"); + return -1; + } + + val = PyFloat_AS_DOUBLE(fo); + Py_DECREF(fo); + + return val; +} + +/* Methods */ + +static void +format_float(char *buf, size_t buflen, PyFloatObject *v, int precision) +{ + register char *cp; + char format[32]; + /* Subroutine for float_repr and float_print. + We want float numbers to be recognizable as such, + i.e., they should contain a decimal point or an exponent. + However, %g may print the number as an integer; + in such cases, we append ".0" to the string. */ + + assert(PyFloat_Check(v)); + PyOS_snprintf(format, 32, "%%.%ig", precision); + PyOS_ascii_formatd(buf, buflen, format, v->ob_fval); + cp = buf; + if (*cp == '-') + cp++; + for (; *cp != '\0'; cp++) { + /* Any non-digit means it's not an integer; + this takes care of NAN and INF as well. */ + if (!isdigit(Py_CHARMASK(*cp))) + break; + } + if (*cp == '\0') { + *cp++ = '.'; + *cp++ = '0'; + *cp++ = '\0'; + } +} + +/* XXX PyFloat_AsStringEx should not be a public API function (for one + XXX thing, its signature passes a buffer without a length; for another, + XXX it isn't useful outside this file). +*/ +void +PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision) +{ + format_float(buf, 100, v, precision); +} + +/* Macro and helper that convert PyObject obj to a C double and store + the value in dbl; this replaces the functionality of the coercion + slot function. If conversion to double raises an exception, obj is + set to NULL, and the function invoking this macro returns NULL. If + obj is not of float, int or long type, Py_NotImplemented is incref'ed, + stored in obj, and returned from the function invoking this macro. +*/ +#define CONVERT_TO_DOUBLE(obj, dbl) \ + if (PyFloat_Check(obj)) \ + dbl = PyFloat_AS_DOUBLE(obj); \ + else if (convert_to_double(&(obj), &(dbl)) < 0) \ + return obj; + +static int +convert_to_double(PyObject **v, double *dbl) +{ + register PyObject *obj = *v; + + if (PyInt_Check(obj)) { + *dbl = (double)PyInt_AS_LONG(obj); + } + else if (PyLong_Check(obj)) { + *dbl = PyLong_AsDouble(obj); + if (*dbl == -1.0 && PyErr_Occurred()) { + *v = NULL; + return -1; + } + } + else { + Py_INCREF(Py_NotImplemented); + *v = Py_NotImplemented; + return -1; + } + return 0; +} + +/* Precisions used by repr() and str(), respectively. + + The repr() precision (17 significant decimal digits) is the minimal number + that is guaranteed to have enough precision so that if the number is read + back in the exact same binary value is recreated. This is true for IEEE + floating point by design, and also happens to work for all other modern + hardware. + + The str() precision is chosen so that in most cases, the rounding noise + created by various operations is suppressed, while giving plenty of + precision for practical use. + +*/ + +#define PREC_REPR 17 +#define PREC_STR 12 + +/* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated: + XXX they pass a char buffer without passing a length. +*/ +void +PyFloat_AsString(char *buf, PyFloatObject *v) +{ + format_float(buf, 100, v, PREC_STR); +} + +void +PyFloat_AsReprString(char *buf, PyFloatObject *v) +{ + format_float(buf, 100, v, PREC_REPR); +} + +/* ARGSUSED */ +static int +float_print(PyFloatObject *v, FILE *fp, int flags) +{ + char buf[100]; + format_float(buf, sizeof(buf), v, + (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR); + fputs(buf, fp); + return 0; +} + +static PyObject * +float_repr(PyFloatObject *v) +{ + char buf[100]; + format_float(buf, sizeof(buf), v, PREC_REPR); + return PyString_FromString(buf); +} + +static PyObject * +float_str(PyFloatObject *v) +{ + char buf[100]; + format_float(buf, sizeof(buf), v, PREC_STR); + return PyString_FromString(buf); +} + +/* Comparison is pretty much a nightmare. When comparing float to float, + * we do it as straightforwardly (and long-windedly) as conceivable, so + * that, e.g., Python x == y delivers the same result as the platform + * C x == y when x and/or y is a NaN. + * When mixing float with an integer type, there's no good *uniform* approach. + * Converting the double to an integer obviously doesn't work, since we + * may lose info from fractional bits. Converting the integer to a double + * also has two failure modes: (1) a long int may trigger overflow (too + * large to fit in the dynamic range of a C double); (2) even a C long may have + * more bits than fit in a C double (e.g., on a a 64-bit box long may have + * 63 bits of precision, but a C double probably has only 53), and then + * we can falsely claim equality when low-order integer bits are lost by + * coercion to double. So this part is painful too. + */ + +static PyObject* +float_richcompare(PyObject *v, PyObject *w, int op) +{ + double i, j; + int r = 0; + + assert(PyFloat_Check(v)); + i = PyFloat_AS_DOUBLE(v); + + /* Switch on the type of w. Set i and j to doubles to be compared, + * and op to the richcomp to use. + */ + if (PyFloat_Check(w)) + j = PyFloat_AS_DOUBLE(w); + + else if (!Py_IS_FINITE(i)) { + if (PyInt_Check(w) || PyLong_Check(w)) + /* If i is an infinity, its magnitude exceeds any + * finite integer, so it doesn't matter which int we + * compare i with. If i is a NaN, similarly. + */ + j = 0.0; + else + goto Unimplemented; + } + + else if (PyInt_Check(w)) { + long jj = PyInt_AS_LONG(w); + /* In the worst realistic case I can imagine, C double is a + * Cray single with 48 bits of precision, and long has 64 + * bits. + */ +#if SIZEOF_LONG > 6 + unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj); + if (abs >> 48) { + /* Needs more than 48 bits. Make it take the + * PyLong path. + */ + PyObject *result; + PyObject *ww = PyLong_FromLong(jj); + + if (ww == NULL) + return NULL; + result = float_richcompare(v, ww, op); + Py_DECREF(ww); + return result; + } +#endif + j = (double)jj; + assert((long)j == jj); + } + + else if (PyLong_Check(w)) { + int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1; + int wsign = _PyLong_Sign(w); + size_t nbits; + int exponent; + + if (vsign != wsign) { + /* Magnitudes are irrelevant -- the signs alone + * determine the outcome. + */ + i = (double)vsign; + j = (double)wsign; + goto Compare; + } + /* The signs are the same. */ + /* Convert w to a double if it fits. In particular, 0 fits. */ + nbits = _PyLong_NumBits(w); + if (nbits == (size_t)-1 && PyErr_Occurred()) { + /* This long is so large that size_t isn't big enough + * to hold the # of bits. Replace with little doubles + * that give the same outcome -- w is so large that + * its magnitude must exceed the magnitude of any + * finite float. + */ + PyErr_Clear(); + i = (double)vsign; + assert(wsign != 0); + j = wsign * 2.0; + goto Compare; + } + if (nbits <= 48) { + j = PyLong_AsDouble(w); + /* It's impossible that <= 48 bits overflowed. */ + assert(j != -1.0 || ! PyErr_Occurred()); + goto Compare; + } + assert(wsign != 0); /* else nbits was 0 */ + assert(vsign != 0); /* if vsign were 0, then since wsign is + * not 0, we would have taken the + * vsign != wsign branch at the start */ + /* We want to work with non-negative numbers. */ + if (vsign < 0) { + /* "Multiply both sides" by -1; this also swaps the + * comparator. + */ + i = -i; + op = _Py_SwappedOp[op]; + } + assert(i > 0.0); + (void) frexp(i, &exponent); + /* exponent is the # of bits in v before the radix point; + * we know that nbits (the # of bits in w) > 48 at this point + */ + if (exponent < 0 || (size_t)exponent < nbits) { + i = 1.0; + j = 2.0; + goto Compare; + } + if ((size_t)exponent > nbits) { + i = 2.0; + j = 1.0; + goto Compare; + } + /* v and w have the same number of bits before the radix + * point. Construct two longs that have the same comparison + * outcome. + */ + { + double fracpart; + double intpart; + PyObject *result = NULL; + PyObject *one = NULL; + PyObject *vv = NULL; + PyObject *ww = w; + + if (wsign < 0) { + ww = PyNumber_Negative(w); + if (ww == NULL) + goto Error; + } + else + Py_INCREF(ww); + + fracpart = modf(i, &intpart); + vv = PyLong_FromDouble(intpart); + if (vv == NULL) + goto Error; + + if (fracpart != 0.0) { + /* Shift left, and or a 1 bit into vv + * to represent the lost fraction. + */ + PyObject *temp; + + one = PyInt_FromLong(1); + if (one == NULL) + goto Error; + + temp = PyNumber_Lshift(ww, one); + if (temp == NULL) + goto Error; + Py_DECREF(ww); + ww = temp; + + temp = PyNumber_Lshift(vv, one); + if (temp == NULL) + goto Error; + Py_DECREF(vv); + vv = temp; + + temp = PyNumber_Or(vv, one); + if (temp == NULL) + goto Error; + Py_DECREF(vv); + vv = temp; + } + + r = PyObject_RichCompareBool(vv, ww, op); + if (r < 0) + goto Error; + result = PyBool_FromLong(r); + Error: + Py_XDECREF(vv); + Py_XDECREF(ww); + Py_XDECREF(one); + return result; + } + } /* else if (PyLong_Check(w)) */ + + else /* w isn't float, int, or long */ + goto Unimplemented; + + Compare: + PyFPE_START_PROTECT("richcompare", return NULL) + switch (op) { + case Py_EQ: + r = i == j; + break; + case Py_NE: + r = i != j; + break; + case Py_LE: + r = i <= j; + break; + case Py_GE: + r = i >= j; + break; + case Py_LT: + r = i < j; + break; + case Py_GT: + r = i > j; + break; + } + PyFPE_END_PROTECT(r) + return PyBool_FromLong(r); + + Unimplemented: + Py_INCREF(Py_NotImplemented); + return Py_NotImplemented; +} + +static long +float_hash(PyFloatObject *v) +{ + return _Py_HashDouble(v->ob_fval); +} + +static PyObject * +float_add(PyObject *v, PyObject *w) +{ + double a,b; + CONVERT_TO_DOUBLE(v, a); + CONVERT_TO_DOUBLE(w, b); + PyFPE_START_PROTECT("add", return 0) + a = a + b; + PyFPE_END_PROTECT(a) + return PyFloat_FromDouble(a); +} + +static PyObject * +float_sub(PyObject *v, PyObject *w) +{ + double a,b; + CONVERT_TO_DOUBLE(v, a); + CONVERT_TO_DOUBLE(w, b); + PyFPE_START_PROTECT("subtract", return 0) + a = a - b; + PyFPE_END_PROTECT(a) + return PyFloat_FromDouble(a); +} + +static PyObject * +float_mul(PyObject *v, PyObject *w) +{ + double a,b; + CONVERT_TO_DOUBLE(v, a); + CONVERT_TO_DOUBLE(w, b); + PyFPE_START_PROTECT("multiply", return 0) + a = a * b; + PyFPE_END_PROTECT(a) + return PyFloat_FromDouble(a); +} + +static PyObject * +float_div(PyObject *v, PyObject *w) +{ + double a,b; + CONVERT_TO_DOUBLE(v, a); + CONVERT_TO_DOUBLE(w, b); + if (b == 0.0) { + PyErr_SetString(PyExc_ZeroDivisionError, "float division"); + return NULL; + } + PyFPE_START_PROTECT("divide", return 0) + a = a / b; + PyFPE_END_PROTECT(a) + return PyFloat_FromDouble(a); +} + +static PyObject * +float_classic_div(PyObject *v, PyObject *w) +{ + double a,b; + CONVERT_TO_DOUBLE(v, a); + CONVERT_TO_DOUBLE(w, b); + if (Py_DivisionWarningFlag >= 2 && + PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0) + return NULL; + if (b == 0.0) { + PyErr_SetString(PyExc_ZeroDivisionError, "float division"); + return NULL; + } + PyFPE_START_PROTECT("divide", return 0) + a = a / b; + PyFPE_END_PROTECT(a) + return PyFloat_FromDouble(a); +} + +static PyObject * +float_rem(PyObject *v, PyObject *w) +{ + double vx, wx; + double mod; + CONVERT_TO_DOUBLE(v, vx); + CONVERT_TO_DOUBLE(w, wx); + if (wx == 0.0) { + PyErr_SetString(PyExc_ZeroDivisionError, "float modulo"); + return NULL; + } + PyFPE_START_PROTECT("modulo", return 0) + mod = fmod(vx, wx); + /* note: checking mod*wx < 0 is incorrect -- underflows to + 0 if wx < sqrt(smallest nonzero double) */ + if (mod && ((wx < 0) != (mod < 0))) { + mod += wx; + } + PyFPE_END_PROTECT(mod) + return PyFloat_FromDouble(mod); +} + +static PyObject * +float_divmod(PyObject *v, PyObject *w) +{ + double vx, wx; + double div, mod, floordiv; + CONVERT_TO_DOUBLE(v, vx); + CONVERT_TO_DOUBLE(w, wx); + if (wx == 0.0) { + PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()"); + return NULL; + } + PyFPE_START_PROTECT("divmod", return 0) + mod = fmod(vx, wx); + /* fmod is typically exact, so vx-mod is *mathematically* an + exact multiple of wx. But this is fp arithmetic, and fp + vx - mod is an approximation; the result is that div may + not be an exact integral value after the division, although + it will always be very close to one. + */ + div = (vx - mod) / wx; + if (mod) { + /* ensure the remainder has the same sign as the denominator */ + if ((wx < 0) != (mod < 0)) { + mod += wx; + div -= 1.0; + } + } + else { + /* the remainder is zero, and in the presence of signed zeroes + fmod returns different results across platforms; ensure + it has the same sign as the denominator; we'd like to do + "mod = wx * 0.0", but that may get optimized away */ + mod *= mod; /* hide "mod = +0" from optimizer */ + if (wx < 0.0) + mod = -mod; + } + /* snap quotient to nearest integral value */ + if (div) { + floordiv = floor(div); + if (div - floordiv > 0.5) + floordiv += 1.0; + } + else { + /* div is zero - get the same sign as the true quotient */ + div *= div; /* hide "div = +0" from optimizers */ + floordiv = div * vx / wx; /* zero w/ sign of vx/wx */ + } + PyFPE_END_PROTECT(floordiv) + return Py_BuildValue("(dd)", floordiv, mod); +} + +static PyObject * +float_floor_div(PyObject *v, PyObject *w) +{ + PyObject *t, *r; + + t = float_divmod(v, w); + if (t == NULL || t == Py_NotImplemented) + return t; + assert(PyTuple_CheckExact(t)); + r = PyTuple_GET_ITEM(t, 0); + Py_INCREF(r); + Py_DECREF(t); + return r; +} + +static PyObject * +float_pow(PyObject *v, PyObject *w, PyObject *z) +{ + double iv, iw, ix; + + if ((PyObject *)z != Py_None) { + PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not " + "allowed unless all arguments are integers"); + return NULL; + } + + CONVERT_TO_DOUBLE(v, iv); + CONVERT_TO_DOUBLE(w, iw); + + /* Sort out special cases here instead of relying on pow() */ + if (iw == 0) { /* v**0 is 1, even 0**0 */ + PyFPE_START_PROTECT("pow", return NULL) + if ((PyObject *)z != Py_None) { + double iz; + CONVERT_TO_DOUBLE(z, iz); + ix = fmod(1.0, iz); + if (ix != 0 && iz < 0) + ix += iz; + } + else + ix = 1.0; + PyFPE_END_PROTECT(ix) + return PyFloat_FromDouble(ix); + } + if (iv == 0.0) { /* 0**w is error if w<0, else 1 */ + if (iw < 0.0) { + PyErr_SetString(PyExc_ZeroDivisionError, + "0.0 cannot be raised to a negative power"); + return NULL; + } + return PyFloat_FromDouble(0.0); + } + if (iv < 0.0) { + /* Whether this is an error is a mess, and bumps into libm + * bugs so we have to figure it out ourselves. + */ + if (iw != floor(iw)) { + PyErr_SetString(PyExc_ValueError, "negative number " + "cannot be raised to a fractional power"); + return NULL; + } + /* iw is an exact integer, albeit perhaps a very large one. + * -1 raised to an exact integer should never be exceptional. + * Alas, some libms (chiefly glibc as of early 2003) return + * NaN and set EDOM on pow(-1, large_int) if the int doesn't + * happen to be representable in a *C* integer. That's a + * bug; we let that slide in math.pow() (which currently + * reflects all platform accidents), but not for Python's **. + */ + if (iv == -1.0 && Py_IS_FINITE(iw)) { + /* Return 1 if iw is even, -1 if iw is odd; there's + * no guarantee that any C integral type is big + * enough to hold iw, so we have to check this + * indirectly. + */ + ix = floor(iw * 0.5) * 2.0; + return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0); + } + /* Else iv != -1.0, and overflow or underflow are possible. + * Unless we're to write pow() ourselves, we have to trust + * the platform to do this correctly. + */ + } + errno = 0; + PyFPE_START_PROTECT("pow", return NULL) + ix = pow(iv, iw); + PyFPE_END_PROTECT(ix) + Py_ADJUST_ERANGE1(ix); + if (errno != 0) { + /* We don't expect any errno value other than ERANGE, but + * the range of libm bugs appears unbounded. + */ + PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : + PyExc_ValueError); + return NULL; + } + return PyFloat_FromDouble(ix); +} + +static PyObject * +float_neg(PyFloatObject *v) +{ + return PyFloat_FromDouble(-v->ob_fval); +} + +static PyObject * +float_pos(PyFloatObject *v) +{ + if (PyFloat_CheckExact(v)) { + Py_INCREF(v); + return (PyObject *)v; + } + else + return PyFloat_FromDouble(v->ob_fval); +} + +static PyObject * +float_abs(PyFloatObject *v) +{ + return PyFloat_FromDouble(fabs(v->ob_fval)); +} + +static int +float_nonzero(PyFloatObject *v) +{ + return v->ob_fval != 0.0; +} + +static int +float_coerce(PyObject **pv, PyObject **pw) +{ + if (PyInt_Check(*pw)) { + long x = PyInt_AsLong(*pw); + *pw = PyFloat_FromDouble((double)x); + Py_INCREF(*pv); + return 0; + } + else if (PyLong_Check(*pw)) { + double x = PyLong_AsDouble(*pw); + if (x == -1.0 && PyErr_Occurred()) + return -1; + *pw = PyFloat_FromDouble(x); + Py_INCREF(*pv); + return 0; + } + else if (PyFloat_Check(*pw)) { + Py_INCREF(*pv); + Py_INCREF(*pw); + return 0; + } + return 1; /* Can't do it */ +} + +static PyObject * +float_long(PyObject *v) +{ + double x = PyFloat_AsDouble(v); + return PyLong_FromDouble(x); +} + +static PyObject * +float_int(PyObject *v) +{ + double x = PyFloat_AsDouble(v); + double wholepart; /* integral portion of x, rounded toward 0 */ + + (void)modf(x, &wholepart); + /* Try to get out cheap if this fits in a Python int. The attempt + * to cast to long must be protected, as C doesn't define what + * happens if the double is too big to fit in a long. Some rare + * systems raise an exception then (RISCOS was mentioned as one, + * and someone using a non-default option on Sun also bumped into + * that). Note that checking for >= and <= LONG_{MIN,MAX} would + * still be vulnerable: if a long has more bits of precision than + * a double, casting MIN/MAX to double may yield an approximation, + * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would + * yield true from the C expression wholepart<=LONG_MAX, despite + * that wholepart is actually greater than LONG_MAX. + */ + if (LONG_MIN < wholepart && wholepart < LONG_MAX) { + const long aslong = (long)wholepart; + return PyInt_FromLong(aslong); + } + return PyLong_FromDouble(wholepart); +} + +static PyObject * +float_float(PyObject *v) +{ + if (PyFloat_CheckExact(v)) + Py_INCREF(v); + else + v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval); + return v; +} + + +static PyObject * +float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds); + +static PyObject * +float_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + PyObject *x = Py_False; /* Integer zero */ + static char *kwlist[] = {"x", 0}; + + if (type != &PyFloat_Type) + return float_subtype_new(type, args, kwds); /* Wimp out */ + if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x)) + return NULL; + if (PyString_Check(x)) + return PyFloat_FromString(x, NULL); + return PyNumber_Float(x); +} + +/* Wimpy, slow approach to tp_new calls for subtypes of float: + first create a regular float from whatever arguments we got, + then allocate a subtype instance and initialize its ob_fval + from the regular float. The regular float is then thrown away. +*/ +static PyObject * +float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds) +{ + PyObject *tmp, *newobj; + + assert(PyType_IsSubtype(type, &PyFloat_Type)); + tmp = float_new(&PyFloat_Type, args, kwds); + if (tmp == NULL) + return NULL; + assert(PyFloat_CheckExact(tmp)); + newobj = type->tp_alloc(type, 0); + if (newobj == NULL) { + Py_DECREF(tmp); + return NULL; + } + ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval; + Py_DECREF(tmp); + return newobj; +} + +static PyObject * +float_getnewargs(PyFloatObject *v) +{ + return Py_BuildValue("(d)", v->ob_fval); +} + +/* this is for the benefit of the pack/unpack routines below */ + +typedef enum { + unknown_format, ieee_big_endian_format, ieee_little_endian_format +} float_format_type; + +static float_format_type double_format, float_format; +static float_format_type detected_double_format, detected_float_format; + +static PyObject * +float_getformat(PyTypeObject *v, PyObject* arg) +{ + char* s; + float_format_type r; + + if (!PyString_Check(arg)) { + PyErr_Format(PyExc_TypeError, + "__getformat__() argument must be string, not %.500s", + arg->ob_type->tp_name); + return NULL; + } + s = PyString_AS_STRING(arg); + if (strcmp(s, "double") == 0) { + r = double_format; + } + else if (strcmp(s, "float") == 0) { + r = float_format; + } + else { + PyErr_SetString(PyExc_ValueError, + "__getformat__() argument 1 must be " + "'double' or 'float'"); + return NULL; + } + + switch (r) { + case unknown_format: + return PyString_FromString("unknown"); + case ieee_little_endian_format: + return PyString_FromString("IEEE, little-endian"); + case ieee_big_endian_format: + return PyString_FromString("IEEE, big-endian"); + default: + Py_FatalError("insane float_format or double_format"); + return NULL; + } +} + +PyDoc_STRVAR(float_getformat_doc, +"float.__getformat__(tstr) -> string\n" +"\n" +"You probably don't want to use this function. It exists mainly to be\n" +"used in Python's test suite.\n" +"\n" +"tstr must be 'double' or 'float'. This function returns whichever of\n" +"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n" +"format of floating point numbers used by the C type named by tstr."); + +static PyObject * +float_setformat(PyTypeObject *v, PyObject* args) +{ + char* tstr; + char* format; + float_format_type f; + float_format_type detected; + float_format_type *p; + + if (!PyArg_ParseTuple(args, "ss:__setformat__", &tstr, &format)) + return NULL; + + if (strcmp(tstr, "double") == 0) { + p = &double_format; + detected = detected_double_format; + } + else if (strcmp(tstr, "float") == 0) { + p = &float_format; + detected = detected_float_format; + } + else { + PyErr_SetString(PyExc_ValueError, + "__setformat__() argument 1 must " + "be 'double' or 'float'"); + return NULL; + } + + if (strcmp(format, "unknown") == 0) { + f = unknown_format; + } + else if (strcmp(format, "IEEE, little-endian") == 0) { + f = ieee_little_endian_format; + } + else if (strcmp(format, "IEEE, big-endian") == 0) { + f = ieee_big_endian_format; + } + else { + PyErr_SetString(PyExc_ValueError, + "__setformat__() argument 2 must be " + "'unknown', 'IEEE, little-endian' or " + "'IEEE, big-endian'"); + return NULL; + + } + + if (f != unknown_format && f != detected) { + PyErr_Format(PyExc_ValueError, + "can only set %s format to 'unknown' or the " + "detected platform value", tstr); + return NULL; + } + + *p = f; + Py_RETURN_NONE; +} + +PyDoc_STRVAR(float_setformat_doc, +"float.__setformat__(tstr, fmt) -> None\n" +"\n" +"You probably don't want to use this function. It exists mainly to be\n" +"used in Python's test suite.\n" +"\n" +"tstr must be 'double' or 'float'. fmt must be one of 'unknown',\n" +"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n" +"one of the latter two if it appears to match the underlying C reality.\n" +"\n" +"Overrides the automatic determination of C-level floating point type.\n" +"This affects how floats are converted to and from binary strings."); + +static PyMethodDef float_methods[] = { + {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS}, + {"__getformat__", (PyCFunction)float_getformat, + METH_O|METH_CLASS, float_getformat_doc}, + {"__setformat__", (PyCFunction)float_setformat, + METH_VARARGS|METH_CLASS, float_setformat_doc}, + {NULL, NULL} /* sentinel */ +}; + +PyDoc_STRVAR(float_doc, +"float(x) -> floating point number\n\ +\n\ +Convert a string or number to a floating point number, if possible."); + + +static PyNumberMethods float_as_number = { + float_add, /*nb_add*/ + float_sub, /*nb_subtract*/ + float_mul, /*nb_multiply*/ + float_classic_div, /*nb_divide*/ + float_rem, /*nb_remainder*/ + float_divmod, /*nb_divmod*/ + float_pow, /*nb_power*/ + (unaryfunc)float_neg, /*nb_negative*/ + (unaryfunc)float_pos, /*nb_positive*/ + (unaryfunc)float_abs, /*nb_absolute*/ + (inquiry)float_nonzero, /*nb_nonzero*/ + 0, /*nb_invert*/ + 0, /*nb_lshift*/ + 0, /*nb_rshift*/ + 0, /*nb_and*/ + 0, /*nb_xor*/ + 0, /*nb_or*/ + float_coerce, /*nb_coerce*/ + float_int, /*nb_int*/ + float_long, /*nb_long*/ + float_float, /*nb_float*/ + 0, /* nb_oct */ + 0, /* nb_hex */ + 0, /* nb_inplace_add */ + 0, /* nb_inplace_subtract */ + 0, /* nb_inplace_multiply */ + 0, /* nb_inplace_divide */ + 0, /* nb_inplace_remainder */ + 0, /* nb_inplace_power */ + 0, /* nb_inplace_lshift */ + 0, /* nb_inplace_rshift */ + 0, /* nb_inplace_and */ + 0, /* nb_inplace_xor */ + 0, /* nb_inplace_or */ + float_floor_div, /* nb_floor_divide */ + float_div, /* nb_true_divide */ + 0, /* nb_inplace_floor_divide */ + 0, /* nb_inplace_true_divide */ +}; + +PyTypeObject PyFloat_Type = { + PyObject_HEAD_INIT(&PyType_Type) + 0, + "float", + sizeof(PyFloatObject), + 0, + (destructor)float_dealloc, /* tp_dealloc */ + (printfunc)float_print, /* tp_print */ + 0, /* tp_getattr */ + 0, /* tp_setattr */ + 0, /* tp_compare */ + (reprfunc)float_repr, /* tp_repr */ + &float_as_number, /* tp_as_number */ + 0, /* tp_as_sequence */ + 0, /* tp_as_mapping */ + (hashfunc)float_hash, /* tp_hash */ + 0, /* tp_call */ + (reprfunc)float_str, /* tp_str */ + PyObject_GenericGetAttr, /* tp_getattro */ + 0, /* tp_setattro */ + 0, /* tp_as_buffer */ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES | + Py_TPFLAGS_BASETYPE, /* tp_flags */ + float_doc, /* tp_doc */ + 0, /* tp_traverse */ + 0, /* tp_clear */ + float_richcompare, /* tp_richcompare */ + 0, /* tp_weaklistoffset */ + 0, /* tp_iter */ + 0, /* tp_iternext */ + float_methods, /* tp_methods */ + 0, /* tp_members */ + 0, /* tp_getset */ + 0, /* tp_base */ + 0, /* tp_dict */ + 0, /* tp_descr_get */ + 0, /* tp_descr_set */ + 0, /* tp_dictoffset */ + 0, /* tp_init */ + 0, /* tp_alloc */ + float_new, /* tp_new */ +}; + +void +_PyFloat_Init(void) +{ + /* We attempt to determine if this machine is using IEEE + floating point formats by peering at the bits of some + carefully chosen values. If it looks like we are on an + IEEE platform, the float packing/unpacking routines can + just copy bits, if not they resort to arithmetic & shifts + and masks. The shifts & masks approach works on all finite + values, but what happens to infinities, NaNs and signed + zeroes on packing is an accident, and attempting to unpack + a NaN or an infinity will raise an exception. + + Note that if we're on some whacked-out platform which uses + IEEE formats but isn't strictly little-endian or big- + endian, we will fall back to the portable shifts & masks + method. */ + +#if SIZEOF_DOUBLE == 8 + { + double x = 9006104071832581.0; + if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) + detected_double_format = ieee_big_endian_format; + else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) + detected_double_format = ieee_little_endian_format; + else + detected_double_format = unknown_format; + } +#else + detected_double_format = unknown_format; +#endif + +#if SIZEOF_FLOAT == 4 + { + float y = 16711938.0; + if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) + detected_float_format = ieee_big_endian_format; + else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) + detected_float_format = ieee_little_endian_format; + else + detected_float_format = unknown_format; + } +#else + detected_float_format = unknown_format; +#endif + + double_format = detected_double_format; + float_format = detected_float_format; +} + +void +PyFloat_Fini(void) +{ + PyFloatObject *p; + PyFloatBlock *list, *next; + unsigned i; + int bc, bf; /* block count, number of freed blocks */ + int frem, fsum; /* remaining unfreed floats per block, total */ + + bc = 0; + bf = 0; + fsum = 0; + list = block_list; + block_list = NULL; + free_list = NULL; + while (list != NULL) { + bc++; + frem = 0; + for (i = 0, p = &list->objects[0]; + i < N_FLOATOBJECTS; + i++, p++) { + if (PyFloat_CheckExact(p) && p->ob_refcnt != 0) + frem++; + } + next = list->next; + if (frem) { + list->next = block_list; + block_list = list; + for (i = 0, p = &list->objects[0]; + i < N_FLOATOBJECTS; + i++, p++) { + if (!PyFloat_CheckExact(p) || + p->ob_refcnt == 0) { + p->ob_type = (struct _typeobject *) + free_list; + free_list = p; + } + } + } + else { + PyMem_FREE(list); /* XXX PyObject_FREE ??? */ + bf++; + } + fsum += frem; + list = next; + } + if (!Py_VerboseFlag) + return; + fprintf(stderr, "# cleanup floats"); + if (!fsum) { + fprintf(stderr, "\n"); + } + else { + fprintf(stderr, + ": %d unfreed float%s in %d out of %d block%s\n", + fsum, fsum == 1 ? "" : "s", + bc - bf, bc, bc == 1 ? "" : "s"); + } + if (Py_VerboseFlag > 1) { + list = block_list; + while (list != NULL) { + for (i = 0, p = &list->objects[0]; + i < N_FLOATOBJECTS; + i++, p++) { + if (PyFloat_CheckExact(p) && + p->ob_refcnt != 0) { + char buf[100]; + PyFloat_AsString(buf, p); + /* XXX(twouters) cast refcount to + long until %zd is universally + available + */ + fprintf(stderr, + "# <float at %p, refcnt=%ld, val=%s>\n", + p, (long)p->ob_refcnt, buf); + } + } + list = list->next; + } + } +} + +/*---------------------------------------------------------------------------- + * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h. + * + * TODO: On platforms that use the standard IEEE-754 single and double + * formats natively, these routines could simply copy the bytes. + */ +int +_PyFloat_Pack4(double x, unsigned char *p, int le) +{ + if (float_format == unknown_format) { + unsigned char sign; + int e; + double f; + unsigned int fbits; + int incr = 1; + + if (le) { + p += 3; + incr = -1; + } + + if (x < 0) { + sign = 1; + x = -x; + } + else + sign = 0; + + f = frexp(x, &e); + + /* Normalize f to be in the range [1.0, 2.0) */ + if (0.5 <= f && f < 1.0) { + f *= 2.0; + e--; + } + else if (f == 0.0) + e = 0; + else { + PyErr_SetString(PyExc_SystemError, + "frexp() result out of range"); + return -1; + } + + if (e >= 128) + goto Overflow; + else if (e < -126) { + /* Gradual underflow */ + f = ldexp(f, 126 + e); + e = 0; + } + else if (!(e == 0 && f == 0.0)) { + e += 127; + f -= 1.0; /* Get rid of leading 1 */ + } + + f *= 8388608.0; /* 2**23 */ + fbits = (unsigned int)(f + 0.5); /* Round */ + assert(fbits <= 8388608); + if (fbits >> 23) { + /* The carry propagated out of a string of 23 1 bits. */ + fbits = 0; + ++e; + if (e >= 255) + goto Overflow; + } + + /* First byte */ + *p = (sign << 7) | (e >> 1); + p += incr; + + /* Second byte */ + *p = (char) (((e & 1) << 7) | (fbits >> 16)); + p += incr; + + /* Third byte */ + *p = (fbits >> 8) & 0xFF; + p += incr; + + /* Fourth byte */ + *p = fbits & 0xFF; + + /* Done */ + return 0; + + Overflow: + PyErr_SetString(PyExc_OverflowError, + "float too large to pack with f format"); + return -1; + } + else { + float y = (float)x; + const char *s = (char*)&y; + int i, incr = 1; + + if ((float_format == ieee_little_endian_format && !le) + || (float_format == ieee_big_endian_format && le)) { + p += 3; + incr = -1; + } + + for (i = 0; i < 4; i++) { + *p = *s++; + p += incr; + } + return 0; + } +} + +int +_PyFloat_Pack8(double x, unsigned char *p, int le) +{ + if (double_format == unknown_format) { + unsigned char sign; + int e; + double f; + unsigned int fhi, flo; + int incr = 1; + + if (le) { + p += 7; + incr = -1; + } + + if (x < 0) { + sign = 1; + x = -x; + } + else + sign = 0; + + f = frexp(x, &e); + + /* Normalize f to be in the range [1.0, 2.0) */ + if (0.5 <= f && f < 1.0) { + f *= 2.0; + e--; + } + else if (f == 0.0) + e = 0; + else { + PyErr_SetString(PyExc_SystemError, + "frexp() result out of range"); + return -1; + } + + if (e >= 1024) + goto Overflow; + else if (e < -1022) { + /* Gradual underflow */ + f = ldexp(f, 1022 + e); + e = 0; + } + else if (!(e == 0 && f == 0.0)) { + e += 1023; + f -= 1.0; /* Get rid of leading 1 */ + } + + /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */ + f *= 268435456.0; /* 2**28 */ + fhi = (unsigned int)f; /* Truncate */ + assert(fhi < 268435456); + + f -= (double)fhi; + f *= 16777216.0; /* 2**24 */ + flo = (unsigned int)(f + 0.5); /* Round */ + assert(flo <= 16777216); + if (flo >> 24) { + /* The carry propagated out of a string of 24 1 bits. */ + flo = 0; + ++fhi; + if (fhi >> 28) { + /* And it also progagated out of the next 28 bits. */ + fhi = 0; + ++e; + if (e >= 2047) + goto Overflow; + } + } + + /* First byte */ + *p = (sign << 7) | (e >> 4); + p += incr; + + /* Second byte */ + *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24)); + p += incr; + + /* Third byte */ + *p = (fhi >> 16) & 0xFF; + p += incr; + + /* Fourth byte */ + *p = (fhi >> 8) & 0xFF; + p += incr; + + /* Fifth byte */ + *p = fhi & 0xFF; + p += incr; + + /* Sixth byte */ + *p = (flo >> 16) & 0xFF; + p += incr; + + /* Seventh byte */ + *p = (flo >> 8) & 0xFF; + p += incr; + + /* Eighth byte */ + *p = flo & 0xFF; + p += incr; + + /* Done */ + return 0; + + Overflow: + PyErr_SetString(PyExc_OverflowError, + "float too large to pack with d format"); + return -1; + } + else { + const char *s = (char*)&x; + int i, incr = 1; + + if ((double_format == ieee_little_endian_format && !le) + || (double_format == ieee_big_endian_format && le)) { + p += 7; + incr = -1; + } + + for (i = 0; i < 8; i++) { + *p = *s++; + p += incr; + } + return 0; + } +} + +double +_PyFloat_Unpack4(const unsigned char *p, int le) +{ + if (float_format == unknown_format) { + unsigned char sign; + int e; + unsigned int f; + double x; + int incr = 1; + + if (le) { + p += 3; + incr = -1; + } + + /* First byte */ + sign = (*p >> 7) & 1; + e = (*p & 0x7F) << 1; + p += incr; + + /* Second byte */ + e |= (*p >> 7) & 1; + f = (*p & 0x7F) << 16; + p += incr; + + if (e == 255) { + PyErr_SetString( + PyExc_ValueError, + "can't unpack IEEE 754 special value " + "on non-IEEE platform"); + return -1; + } + + /* Third byte */ + f |= *p << 8; + p += incr; + + /* Fourth byte */ + f |= *p; + + x = (double)f / 8388608.0; + + /* XXX This sadly ignores Inf/NaN issues */ + if (e == 0) + e = -126; + else { + x += 1.0; + e -= 127; + } + x = ldexp(x, e); + + if (sign) + x = -x; + + return x; + } + else { + float x; + + if ((float_format == ieee_little_endian_format && !le) + || (float_format == ieee_big_endian_format && le)) { + char buf[4]; + char *d = &buf[3]; + int i; + + for (i = 0; i < 4; i++) { + *d-- = *p++; + } + memcpy(&x, buf, 4); + } + else { + memcpy(&x, p, 4); + } + + return x; + } +} + +double +_PyFloat_Unpack8(const unsigned char *p, int le) +{ + if (double_format == unknown_format) { + unsigned char sign; + int e; + unsigned int fhi, flo; + double x; + int incr = 1; + + if (le) { + p += 7; + incr = -1; + } + + /* First byte */ + sign = (*p >> 7) & 1; + e = (*p & 0x7F) << 4; + + p += incr; + + /* Second byte */ + e |= (*p >> 4) & 0xF; + fhi = (*p & 0xF) << 24; + p += incr; + + if (e == 2047) { + PyErr_SetString( + PyExc_ValueError, + "can't unpack IEEE 754 special value " + "on non-IEEE platform"); + return -1.0; + } + + /* Third byte */ + fhi |= *p << 16; + p += incr; + + /* Fourth byte */ + fhi |= *p << 8; + p += incr; + + /* Fifth byte */ + fhi |= *p; + p += incr; + + /* Sixth byte */ + flo = *p << 16; + p += incr; + + /* Seventh byte */ + flo |= *p << 8; + p += incr; + + /* Eighth byte */ + flo |= *p; + + x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */ + x /= 268435456.0; /* 2**28 */ + + if (e == 0) + e = -1022; + else { + x += 1.0; + e -= 1023; + } + x = ldexp(x, e); + + if (sign) + x = -x; + + return x; + } + else { + double x; + + if ((double_format == ieee_little_endian_format && !le) + || (double_format == ieee_big_endian_format && le)) { + char buf[8]; + char *d = &buf[7]; + int i; + + for (i = 0; i < 8; i++) { + *d-- = *p++; + } + memcpy(&x, buf, 8); + } + else { + memcpy(&x, p, 8); + } + + return x; + } +} |