summaryrefslogtreecommitdiff
path: root/sys/src/cmd/python/Objects/floatobject.c
diff options
context:
space:
mode:
authorOri Bernstein <ori@eigenstate.org>2021-06-14 00:00:37 +0000
committerOri Bernstein <ori@eigenstate.org>2021-06-14 00:00:37 +0000
commita73a964e51247ed169d322c725a3a18859f109a3 (patch)
tree3f752d117274d444bda44e85609aeac1acf313f3 /sys/src/cmd/python/Objects/floatobject.c
parente64efe273fcb921a61bf27d33b230c4e64fcd425 (diff)
python, hg: tow outside the environment.
they've served us well, and can ride off into the sunset.
Diffstat (limited to 'sys/src/cmd/python/Objects/floatobject.c')
-rw-r--r--sys/src/cmd/python/Objects/floatobject.c1748
1 files changed, 0 insertions, 1748 deletions
diff --git a/sys/src/cmd/python/Objects/floatobject.c b/sys/src/cmd/python/Objects/floatobject.c
deleted file mode 100644
index 2087ceba8..000000000
--- a/sys/src/cmd/python/Objects/floatobject.c
+++ /dev/null
@@ -1,1748 +0,0 @@
-
-/* Float object implementation */
-
-/* XXX There should be overflow checks here, but it's hard to check
- for any kind of float exception without losing portability. */
-
-#include "Python.h"
-
-#include <ctype.h>
-
-#if !defined(__STDC__)
-extern double fmod(double, double);
-extern double pow(double, double);
-#endif
-
-/* Special free list -- see comments for same code in intobject.c. */
-#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
-#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
-#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
-
-struct _floatblock {
- struct _floatblock *next;
- PyFloatObject objects[N_FLOATOBJECTS];
-};
-
-typedef struct _floatblock PyFloatBlock;
-
-static PyFloatBlock *block_list = NULL;
-static PyFloatObject *free_list = NULL;
-
-static PyFloatObject *
-fill_free_list(void)
-{
- PyFloatObject *p, *q;
- /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
- p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
- if (p == NULL)
- return (PyFloatObject *) PyErr_NoMemory();
- ((PyFloatBlock *)p)->next = block_list;
- block_list = (PyFloatBlock *)p;
- p = &((PyFloatBlock *)p)->objects[0];
- q = p + N_FLOATOBJECTS;
- while (--q > p)
- q->ob_type = (struct _typeobject *)(q-1);
- q->ob_type = NULL;
- return p + N_FLOATOBJECTS - 1;
-}
-
-PyObject *
-PyFloat_FromDouble(double fval)
-{
- register PyFloatObject *op;
- if (free_list == NULL) {
- if ((free_list = fill_free_list()) == NULL)
- return NULL;
- }
- /* Inline PyObject_New */
- op = free_list;
- free_list = (PyFloatObject *)op->ob_type;
- PyObject_INIT(op, &PyFloat_Type);
- op->ob_fval = fval;
- return (PyObject *) op;
-}
-
-/**************************************************************************
-RED_FLAG 22-Sep-2000 tim
-PyFloat_FromString's pend argument is braindead. Prior to this RED_FLAG,
-
-1. If v was a regular string, *pend was set to point to its terminating
- null byte. That's useless (the caller can find that without any
- help from this function!).
-
-2. If v was a Unicode string, or an object convertible to a character
- buffer, *pend was set to point into stack trash (the auto temp
- vector holding the character buffer). That was downright dangerous.
-
-Since we can't change the interface of a public API function, pend is
-still supported but now *officially* useless: if pend is not NULL,
-*pend is set to NULL.
-**************************************************************************/
-PyObject *
-PyFloat_FromString(PyObject *v, char **pend)
-{
- const char *s, *last, *end;
- double x;
- char buffer[256]; /* for errors */
-#ifdef Py_USING_UNICODE
- char s_buffer[256]; /* for objects convertible to a char buffer */
-#endif
- Py_ssize_t len;
-
- if (pend)
- *pend = NULL;
- if (PyString_Check(v)) {
- s = PyString_AS_STRING(v);
- len = PyString_GET_SIZE(v);
- }
-#ifdef Py_USING_UNICODE
- else if (PyUnicode_Check(v)) {
- if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
- PyErr_SetString(PyExc_ValueError,
- "Unicode float() literal too long to convert");
- return NULL;
- }
- if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
- PyUnicode_GET_SIZE(v),
- s_buffer,
- NULL))
- return NULL;
- s = s_buffer;
- len = strlen(s);
- }
-#endif
- else if (PyObject_AsCharBuffer(v, &s, &len)) {
- PyErr_SetString(PyExc_TypeError,
- "float() argument must be a string or a number");
- return NULL;
- }
-
- last = s + len;
- while (*s && isspace(Py_CHARMASK(*s)))
- s++;
- if (*s == '\0') {
- PyErr_SetString(PyExc_ValueError, "empty string for float()");
- return NULL;
- }
- /* We don't care about overflow or underflow. If the platform supports
- * them, infinities and signed zeroes (on underflow) are fine.
- * However, strtod can return 0 for denormalized numbers, where atof
- * does not. So (alas!) we special-case a zero result. Note that
- * whether strtod sets errno on underflow is not defined, so we can't
- * key off errno.
- */
- PyFPE_START_PROTECT("strtod", return NULL)
- x = PyOS_ascii_strtod(s, (char **)&end);
- PyFPE_END_PROTECT(x)
- errno = 0;
- /* Believe it or not, Solaris 2.6 can move end *beyond* the null
- byte at the end of the string, when the input is inf(inity). */
- if (end > last)
- end = last;
- if (end == s) {
- PyOS_snprintf(buffer, sizeof(buffer),
- "invalid literal for float(): %.200s", s);
- PyErr_SetString(PyExc_ValueError, buffer);
- return NULL;
- }
- /* Since end != s, the platform made *some* kind of sense out
- of the input. Trust it. */
- while (*end && isspace(Py_CHARMASK(*end)))
- end++;
- if (*end != '\0') {
- PyOS_snprintf(buffer, sizeof(buffer),
- "invalid literal for float(): %.200s", s);
- PyErr_SetString(PyExc_ValueError, buffer);
- return NULL;
- }
- else if (end != last) {
- PyErr_SetString(PyExc_ValueError,
- "null byte in argument for float()");
- return NULL;
- }
- if (x == 0.0) {
- /* See above -- may have been strtod being anal
- about denorms. */
- PyFPE_START_PROTECT("atof", return NULL)
- x = PyOS_ascii_atof(s);
- PyFPE_END_PROTECT(x)
- errno = 0; /* whether atof ever set errno is undefined */
- }
- return PyFloat_FromDouble(x);
-}
-
-static void
-float_dealloc(PyFloatObject *op)
-{
- if (PyFloat_CheckExact(op)) {
- op->ob_type = (struct _typeobject *)free_list;
- free_list = op;
- }
- else
- op->ob_type->tp_free((PyObject *)op);
-}
-
-double
-PyFloat_AsDouble(PyObject *op)
-{
- PyNumberMethods *nb;
- PyFloatObject *fo;
- double val;
-
- if (op && PyFloat_Check(op))
- return PyFloat_AS_DOUBLE((PyFloatObject*) op);
-
- if (op == NULL) {
- PyErr_BadArgument();
- return -1;
- }
-
- if ((nb = op->ob_type->tp_as_number) == NULL || nb->nb_float == NULL) {
- PyErr_SetString(PyExc_TypeError, "a float is required");
- return -1;
- }
-
- fo = (PyFloatObject*) (*nb->nb_float) (op);
- if (fo == NULL)
- return -1;
- if (!PyFloat_Check(fo)) {
- PyErr_SetString(PyExc_TypeError,
- "nb_float should return float object");
- return -1;
- }
-
- val = PyFloat_AS_DOUBLE(fo);
- Py_DECREF(fo);
-
- return val;
-}
-
-/* Methods */
-
-static void
-format_float(char *buf, size_t buflen, PyFloatObject *v, int precision)
-{
- register char *cp;
- char format[32];
- /* Subroutine for float_repr and float_print.
- We want float numbers to be recognizable as such,
- i.e., they should contain a decimal point or an exponent.
- However, %g may print the number as an integer;
- in such cases, we append ".0" to the string. */
-
- assert(PyFloat_Check(v));
- PyOS_snprintf(format, 32, "%%.%ig", precision);
- PyOS_ascii_formatd(buf, buflen, format, v->ob_fval);
- cp = buf;
- if (*cp == '-')
- cp++;
- for (; *cp != '\0'; cp++) {
- /* Any non-digit means it's not an integer;
- this takes care of NAN and INF as well. */
- if (!isdigit(Py_CHARMASK(*cp)))
- break;
- }
- if (*cp == '\0') {
- *cp++ = '.';
- *cp++ = '0';
- *cp++ = '\0';
- }
-}
-
-/* XXX PyFloat_AsStringEx should not be a public API function (for one
- XXX thing, its signature passes a buffer without a length; for another,
- XXX it isn't useful outside this file).
-*/
-void
-PyFloat_AsStringEx(char *buf, PyFloatObject *v, int precision)
-{
- format_float(buf, 100, v, precision);
-}
-
-/* Macro and helper that convert PyObject obj to a C double and store
- the value in dbl; this replaces the functionality of the coercion
- slot function. If conversion to double raises an exception, obj is
- set to NULL, and the function invoking this macro returns NULL. If
- obj is not of float, int or long type, Py_NotImplemented is incref'ed,
- stored in obj, and returned from the function invoking this macro.
-*/
-#define CONVERT_TO_DOUBLE(obj, dbl) \
- if (PyFloat_Check(obj)) \
- dbl = PyFloat_AS_DOUBLE(obj); \
- else if (convert_to_double(&(obj), &(dbl)) < 0) \
- return obj;
-
-static int
-convert_to_double(PyObject **v, double *dbl)
-{
- register PyObject *obj = *v;
-
- if (PyInt_Check(obj)) {
- *dbl = (double)PyInt_AS_LONG(obj);
- }
- else if (PyLong_Check(obj)) {
- *dbl = PyLong_AsDouble(obj);
- if (*dbl == -1.0 && PyErr_Occurred()) {
- *v = NULL;
- return -1;
- }
- }
- else {
- Py_INCREF(Py_NotImplemented);
- *v = Py_NotImplemented;
- return -1;
- }
- return 0;
-}
-
-/* Precisions used by repr() and str(), respectively.
-
- The repr() precision (17 significant decimal digits) is the minimal number
- that is guaranteed to have enough precision so that if the number is read
- back in the exact same binary value is recreated. This is true for IEEE
- floating point by design, and also happens to work for all other modern
- hardware.
-
- The str() precision is chosen so that in most cases, the rounding noise
- created by various operations is suppressed, while giving plenty of
- precision for practical use.
-
-*/
-
-#define PREC_REPR 17
-#define PREC_STR 12
-
-/* XXX PyFloat_AsString and PyFloat_AsReprString should be deprecated:
- XXX they pass a char buffer without passing a length.
-*/
-void
-PyFloat_AsString(char *buf, PyFloatObject *v)
-{
- format_float(buf, 100, v, PREC_STR);
-}
-
-void
-PyFloat_AsReprString(char *buf, PyFloatObject *v)
-{
- format_float(buf, 100, v, PREC_REPR);
-}
-
-/* ARGSUSED */
-static int
-float_print(PyFloatObject *v, FILE *fp, int flags)
-{
- char buf[100];
- format_float(buf, sizeof(buf), v,
- (flags & Py_PRINT_RAW) ? PREC_STR : PREC_REPR);
- fputs(buf, fp);
- return 0;
-}
-
-static PyObject *
-float_repr(PyFloatObject *v)
-{
- char buf[100];
- format_float(buf, sizeof(buf), v, PREC_REPR);
- return PyString_FromString(buf);
-}
-
-static PyObject *
-float_str(PyFloatObject *v)
-{
- char buf[100];
- format_float(buf, sizeof(buf), v, PREC_STR);
- return PyString_FromString(buf);
-}
-
-/* Comparison is pretty much a nightmare. When comparing float to float,
- * we do it as straightforwardly (and long-windedly) as conceivable, so
- * that, e.g., Python x == y delivers the same result as the platform
- * C x == y when x and/or y is a NaN.
- * When mixing float with an integer type, there's no good *uniform* approach.
- * Converting the double to an integer obviously doesn't work, since we
- * may lose info from fractional bits. Converting the integer to a double
- * also has two failure modes: (1) a long int may trigger overflow (too
- * large to fit in the dynamic range of a C double); (2) even a C long may have
- * more bits than fit in a C double (e.g., on a a 64-bit box long may have
- * 63 bits of precision, but a C double probably has only 53), and then
- * we can falsely claim equality when low-order integer bits are lost by
- * coercion to double. So this part is painful too.
- */
-
-static PyObject*
-float_richcompare(PyObject *v, PyObject *w, int op)
-{
- double i, j;
- int r = 0;
-
- assert(PyFloat_Check(v));
- i = PyFloat_AS_DOUBLE(v);
-
- /* Switch on the type of w. Set i and j to doubles to be compared,
- * and op to the richcomp to use.
- */
- if (PyFloat_Check(w))
- j = PyFloat_AS_DOUBLE(w);
-
- else if (!Py_IS_FINITE(i)) {
- if (PyInt_Check(w) || PyLong_Check(w))
- /* If i is an infinity, its magnitude exceeds any
- * finite integer, so it doesn't matter which int we
- * compare i with. If i is a NaN, similarly.
- */
- j = 0.0;
- else
- goto Unimplemented;
- }
-
- else if (PyInt_Check(w)) {
- long jj = PyInt_AS_LONG(w);
- /* In the worst realistic case I can imagine, C double is a
- * Cray single with 48 bits of precision, and long has 64
- * bits.
- */
-#if SIZEOF_LONG > 6
- unsigned long abs = (unsigned long)(jj < 0 ? -jj : jj);
- if (abs >> 48) {
- /* Needs more than 48 bits. Make it take the
- * PyLong path.
- */
- PyObject *result;
- PyObject *ww = PyLong_FromLong(jj);
-
- if (ww == NULL)
- return NULL;
- result = float_richcompare(v, ww, op);
- Py_DECREF(ww);
- return result;
- }
-#endif
- j = (double)jj;
- assert((long)j == jj);
- }
-
- else if (PyLong_Check(w)) {
- int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
- int wsign = _PyLong_Sign(w);
- size_t nbits;
- int exponent;
-
- if (vsign != wsign) {
- /* Magnitudes are irrelevant -- the signs alone
- * determine the outcome.
- */
- i = (double)vsign;
- j = (double)wsign;
- goto Compare;
- }
- /* The signs are the same. */
- /* Convert w to a double if it fits. In particular, 0 fits. */
- nbits = _PyLong_NumBits(w);
- if (nbits == (size_t)-1 && PyErr_Occurred()) {
- /* This long is so large that size_t isn't big enough
- * to hold the # of bits. Replace with little doubles
- * that give the same outcome -- w is so large that
- * its magnitude must exceed the magnitude of any
- * finite float.
- */
- PyErr_Clear();
- i = (double)vsign;
- assert(wsign != 0);
- j = wsign * 2.0;
- goto Compare;
- }
- if (nbits <= 48) {
- j = PyLong_AsDouble(w);
- /* It's impossible that <= 48 bits overflowed. */
- assert(j != -1.0 || ! PyErr_Occurred());
- goto Compare;
- }
- assert(wsign != 0); /* else nbits was 0 */
- assert(vsign != 0); /* if vsign were 0, then since wsign is
- * not 0, we would have taken the
- * vsign != wsign branch at the start */
- /* We want to work with non-negative numbers. */
- if (vsign < 0) {
- /* "Multiply both sides" by -1; this also swaps the
- * comparator.
- */
- i = -i;
- op = _Py_SwappedOp[op];
- }
- assert(i > 0.0);
- (void) frexp(i, &exponent);
- /* exponent is the # of bits in v before the radix point;
- * we know that nbits (the # of bits in w) > 48 at this point
- */
- if (exponent < 0 || (size_t)exponent < nbits) {
- i = 1.0;
- j = 2.0;
- goto Compare;
- }
- if ((size_t)exponent > nbits) {
- i = 2.0;
- j = 1.0;
- goto Compare;
- }
- /* v and w have the same number of bits before the radix
- * point. Construct two longs that have the same comparison
- * outcome.
- */
- {
- double fracpart;
- double intpart;
- PyObject *result = NULL;
- PyObject *one = NULL;
- PyObject *vv = NULL;
- PyObject *ww = w;
-
- if (wsign < 0) {
- ww = PyNumber_Negative(w);
- if (ww == NULL)
- goto Error;
- }
- else
- Py_INCREF(ww);
-
- fracpart = modf(i, &intpart);
- vv = PyLong_FromDouble(intpart);
- if (vv == NULL)
- goto Error;
-
- if (fracpart != 0.0) {
- /* Shift left, and or a 1 bit into vv
- * to represent the lost fraction.
- */
- PyObject *temp;
-
- one = PyInt_FromLong(1);
- if (one == NULL)
- goto Error;
-
- temp = PyNumber_Lshift(ww, one);
- if (temp == NULL)
- goto Error;
- Py_DECREF(ww);
- ww = temp;
-
- temp = PyNumber_Lshift(vv, one);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
-
- temp = PyNumber_Or(vv, one);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
- }
-
- r = PyObject_RichCompareBool(vv, ww, op);
- if (r < 0)
- goto Error;
- result = PyBool_FromLong(r);
- Error:
- Py_XDECREF(vv);
- Py_XDECREF(ww);
- Py_XDECREF(one);
- return result;
- }
- } /* else if (PyLong_Check(w)) */
-
- else /* w isn't float, int, or long */
- goto Unimplemented;
-
- Compare:
- PyFPE_START_PROTECT("richcompare", return NULL)
- switch (op) {
- case Py_EQ:
- r = i == j;
- break;
- case Py_NE:
- r = i != j;
- break;
- case Py_LE:
- r = i <= j;
- break;
- case Py_GE:
- r = i >= j;
- break;
- case Py_LT:
- r = i < j;
- break;
- case Py_GT:
- r = i > j;
- break;
- }
- PyFPE_END_PROTECT(r)
- return PyBool_FromLong(r);
-
- Unimplemented:
- Py_INCREF(Py_NotImplemented);
- return Py_NotImplemented;
-}
-
-static long
-float_hash(PyFloatObject *v)
-{
- return _Py_HashDouble(v->ob_fval);
-}
-
-static PyObject *
-float_add(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- PyFPE_START_PROTECT("add", return 0)
- a = a + b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_sub(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- PyFPE_START_PROTECT("subtract", return 0)
- a = a - b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_mul(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- PyFPE_START_PROTECT("multiply", return 0)
- a = a * b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_div(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- if (b == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float division");
- return NULL;
- }
- PyFPE_START_PROTECT("divide", return 0)
- a = a / b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_classic_div(PyObject *v, PyObject *w)
-{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- if (Py_DivisionWarningFlag >= 2 &&
- PyErr_Warn(PyExc_DeprecationWarning, "classic float division") < 0)
- return NULL;
- if (b == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float division");
- return NULL;
- }
- PyFPE_START_PROTECT("divide", return 0)
- a = a / b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
-}
-
-static PyObject *
-float_rem(PyObject *v, PyObject *w)
-{
- double vx, wx;
- double mod;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float modulo");
- return NULL;
- }
- PyFPE_START_PROTECT("modulo", return 0)
- mod = fmod(vx, wx);
- /* note: checking mod*wx < 0 is incorrect -- underflows to
- 0 if wx < sqrt(smallest nonzero double) */
- if (mod && ((wx < 0) != (mod < 0))) {
- mod += wx;
- }
- PyFPE_END_PROTECT(mod)
- return PyFloat_FromDouble(mod);
-}
-
-static PyObject *
-float_divmod(PyObject *v, PyObject *w)
-{
- double vx, wx;
- double div, mod, floordiv;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
- return NULL;
- }
- PyFPE_START_PROTECT("divmod", return 0)
- mod = fmod(vx, wx);
- /* fmod is typically exact, so vx-mod is *mathematically* an
- exact multiple of wx. But this is fp arithmetic, and fp
- vx - mod is an approximation; the result is that div may
- not be an exact integral value after the division, although
- it will always be very close to one.
- */
- div = (vx - mod) / wx;
- if (mod) {
- /* ensure the remainder has the same sign as the denominator */
- if ((wx < 0) != (mod < 0)) {
- mod += wx;
- div -= 1.0;
- }
- }
- else {
- /* the remainder is zero, and in the presence of signed zeroes
- fmod returns different results across platforms; ensure
- it has the same sign as the denominator; we'd like to do
- "mod = wx * 0.0", but that may get optimized away */
- mod *= mod; /* hide "mod = +0" from optimizer */
- if (wx < 0.0)
- mod = -mod;
- }
- /* snap quotient to nearest integral value */
- if (div) {
- floordiv = floor(div);
- if (div - floordiv > 0.5)
- floordiv += 1.0;
- }
- else {
- /* div is zero - get the same sign as the true quotient */
- div *= div; /* hide "div = +0" from optimizers */
- floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
- }
- PyFPE_END_PROTECT(floordiv)
- return Py_BuildValue("(dd)", floordiv, mod);
-}
-
-static PyObject *
-float_floor_div(PyObject *v, PyObject *w)
-{
- PyObject *t, *r;
-
- t = float_divmod(v, w);
- if (t == NULL || t == Py_NotImplemented)
- return t;
- assert(PyTuple_CheckExact(t));
- r = PyTuple_GET_ITEM(t, 0);
- Py_INCREF(r);
- Py_DECREF(t);
- return r;
-}
-
-static PyObject *
-float_pow(PyObject *v, PyObject *w, PyObject *z)
-{
- double iv, iw, ix;
-
- if ((PyObject *)z != Py_None) {
- PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
- "allowed unless all arguments are integers");
- return NULL;
- }
-
- CONVERT_TO_DOUBLE(v, iv);
- CONVERT_TO_DOUBLE(w, iw);
-
- /* Sort out special cases here instead of relying on pow() */
- if (iw == 0) { /* v**0 is 1, even 0**0 */
- PyFPE_START_PROTECT("pow", return NULL)
- if ((PyObject *)z != Py_None) {
- double iz;
- CONVERT_TO_DOUBLE(z, iz);
- ix = fmod(1.0, iz);
- if (ix != 0 && iz < 0)
- ix += iz;
- }
- else
- ix = 1.0;
- PyFPE_END_PROTECT(ix)
- return PyFloat_FromDouble(ix);
- }
- if (iv == 0.0) { /* 0**w is error if w<0, else 1 */
- if (iw < 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 cannot be raised to a negative power");
- return NULL;
- }
- return PyFloat_FromDouble(0.0);
- }
- if (iv < 0.0) {
- /* Whether this is an error is a mess, and bumps into libm
- * bugs so we have to figure it out ourselves.
- */
- if (iw != floor(iw)) {
- PyErr_SetString(PyExc_ValueError, "negative number "
- "cannot be raised to a fractional power");
- return NULL;
- }
- /* iw is an exact integer, albeit perhaps a very large one.
- * -1 raised to an exact integer should never be exceptional.
- * Alas, some libms (chiefly glibc as of early 2003) return
- * NaN and set EDOM on pow(-1, large_int) if the int doesn't
- * happen to be representable in a *C* integer. That's a
- * bug; we let that slide in math.pow() (which currently
- * reflects all platform accidents), but not for Python's **.
- */
- if (iv == -1.0 && Py_IS_FINITE(iw)) {
- /* Return 1 if iw is even, -1 if iw is odd; there's
- * no guarantee that any C integral type is big
- * enough to hold iw, so we have to check this
- * indirectly.
- */
- ix = floor(iw * 0.5) * 2.0;
- return PyFloat_FromDouble(ix == iw ? 1.0 : -1.0);
- }
- /* Else iv != -1.0, and overflow or underflow are possible.
- * Unless we're to write pow() ourselves, we have to trust
- * the platform to do this correctly.
- */
- }
- errno = 0;
- PyFPE_START_PROTECT("pow", return NULL)
- ix = pow(iv, iw);
- PyFPE_END_PROTECT(ix)
- Py_ADJUST_ERANGE1(ix);
- if (errno != 0) {
- /* We don't expect any errno value other than ERANGE, but
- * the range of libm bugs appears unbounded.
- */
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- return PyFloat_FromDouble(ix);
-}
-
-static PyObject *
-float_neg(PyFloatObject *v)
-{
- return PyFloat_FromDouble(-v->ob_fval);
-}
-
-static PyObject *
-float_pos(PyFloatObject *v)
-{
- if (PyFloat_CheckExact(v)) {
- Py_INCREF(v);
- return (PyObject *)v;
- }
- else
- return PyFloat_FromDouble(v->ob_fval);
-}
-
-static PyObject *
-float_abs(PyFloatObject *v)
-{
- return PyFloat_FromDouble(fabs(v->ob_fval));
-}
-
-static int
-float_nonzero(PyFloatObject *v)
-{
- return v->ob_fval != 0.0;
-}
-
-static int
-float_coerce(PyObject **pv, PyObject **pw)
-{
- if (PyInt_Check(*pw)) {
- long x = PyInt_AsLong(*pw);
- *pw = PyFloat_FromDouble((double)x);
- Py_INCREF(*pv);
- return 0;
- }
- else if (PyLong_Check(*pw)) {
- double x = PyLong_AsDouble(*pw);
- if (x == -1.0 && PyErr_Occurred())
- return -1;
- *pw = PyFloat_FromDouble(x);
- Py_INCREF(*pv);
- return 0;
- }
- else if (PyFloat_Check(*pw)) {
- Py_INCREF(*pv);
- Py_INCREF(*pw);
- return 0;
- }
- return 1; /* Can't do it */
-}
-
-static PyObject *
-float_long(PyObject *v)
-{
- double x = PyFloat_AsDouble(v);
- return PyLong_FromDouble(x);
-}
-
-static PyObject *
-float_int(PyObject *v)
-{
- double x = PyFloat_AsDouble(v);
- double wholepart; /* integral portion of x, rounded toward 0 */
-
- (void)modf(x, &wholepart);
- /* Try to get out cheap if this fits in a Python int. The attempt
- * to cast to long must be protected, as C doesn't define what
- * happens if the double is too big to fit in a long. Some rare
- * systems raise an exception then (RISCOS was mentioned as one,
- * and someone using a non-default option on Sun also bumped into
- * that). Note that checking for >= and <= LONG_{MIN,MAX} would
- * still be vulnerable: if a long has more bits of precision than
- * a double, casting MIN/MAX to double may yield an approximation,
- * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
- * yield true from the C expression wholepart<=LONG_MAX, despite
- * that wholepart is actually greater than LONG_MAX.
- */
- if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
- const long aslong = (long)wholepart;
- return PyInt_FromLong(aslong);
- }
- return PyLong_FromDouble(wholepart);
-}
-
-static PyObject *
-float_float(PyObject *v)
-{
- if (PyFloat_CheckExact(v))
- Py_INCREF(v);
- else
- v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
- return v;
-}
-
-
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
-
-static PyObject *
-float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
-{
- PyObject *x = Py_False; /* Integer zero */
- static char *kwlist[] = {"x", 0};
-
- if (type != &PyFloat_Type)
- return float_subtype_new(type, args, kwds); /* Wimp out */
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
- return NULL;
- if (PyString_Check(x))
- return PyFloat_FromString(x, NULL);
- return PyNumber_Float(x);
-}
-
-/* Wimpy, slow approach to tp_new calls for subtypes of float:
- first create a regular float from whatever arguments we got,
- then allocate a subtype instance and initialize its ob_fval
- from the regular float. The regular float is then thrown away.
-*/
-static PyObject *
-float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
-{
- PyObject *tmp, *newobj;
-
- assert(PyType_IsSubtype(type, &PyFloat_Type));
- tmp = float_new(&PyFloat_Type, args, kwds);
- if (tmp == NULL)
- return NULL;
- assert(PyFloat_CheckExact(tmp));
- newobj = type->tp_alloc(type, 0);
- if (newobj == NULL) {
- Py_DECREF(tmp);
- return NULL;
- }
- ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
- Py_DECREF(tmp);
- return newobj;
-}
-
-static PyObject *
-float_getnewargs(PyFloatObject *v)
-{
- return Py_BuildValue("(d)", v->ob_fval);
-}
-
-/* this is for the benefit of the pack/unpack routines below */
-
-typedef enum {
- unknown_format, ieee_big_endian_format, ieee_little_endian_format
-} float_format_type;
-
-static float_format_type double_format, float_format;
-static float_format_type detected_double_format, detected_float_format;
-
-static PyObject *
-float_getformat(PyTypeObject *v, PyObject* arg)
-{
- char* s;
- float_format_type r;
-
- if (!PyString_Check(arg)) {
- PyErr_Format(PyExc_TypeError,
- "__getformat__() argument must be string, not %.500s",
- arg->ob_type->tp_name);
- return NULL;
- }
- s = PyString_AS_STRING(arg);
- if (strcmp(s, "double") == 0) {
- r = double_format;
- }
- else if (strcmp(s, "float") == 0) {
- r = float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__getformat__() argument 1 must be "
- "'double' or 'float'");
- return NULL;
- }
-
- switch (r) {
- case unknown_format:
- return PyString_FromString("unknown");
- case ieee_little_endian_format:
- return PyString_FromString("IEEE, little-endian");
- case ieee_big_endian_format:
- return PyString_FromString("IEEE, big-endian");
- default:
- Py_FatalError("insane float_format or double_format");
- return NULL;
- }
-}
-
-PyDoc_STRVAR(float_getformat_doc,
-"float.__getformat__(tstr) -> string\n"
-"\n"
-"You probably don't want to use this function. It exists mainly to be\n"
-"used in Python's test suite.\n"
-"\n"
-"tstr must be 'double' or 'float'. This function returns whichever of\n"
-"'unknown', 'IEEE, big-endian' or 'IEEE, little-endian' best describes the\n"
-"format of floating point numbers used by the C type named by tstr.");
-
-static PyObject *
-float_setformat(PyTypeObject *v, PyObject* args)
-{
- char* tstr;
- char* format;
- float_format_type f;
- float_format_type detected;
- float_format_type *p;
-
- if (!PyArg_ParseTuple(args, "ss:__setformat__", &tstr, &format))
- return NULL;
-
- if (strcmp(tstr, "double") == 0) {
- p = &double_format;
- detected = detected_double_format;
- }
- else if (strcmp(tstr, "float") == 0) {
- p = &float_format;
- detected = detected_float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 1 must "
- "be 'double' or 'float'");
- return NULL;
- }
-
- if (strcmp(format, "unknown") == 0) {
- f = unknown_format;
- }
- else if (strcmp(format, "IEEE, little-endian") == 0) {
- f = ieee_little_endian_format;
- }
- else if (strcmp(format, "IEEE, big-endian") == 0) {
- f = ieee_big_endian_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 2 must be "
- "'unknown', 'IEEE, little-endian' or "
- "'IEEE, big-endian'");
- return NULL;
-
- }
-
- if (f != unknown_format && f != detected) {
- PyErr_Format(PyExc_ValueError,
- "can only set %s format to 'unknown' or the "
- "detected platform value", tstr);
- return NULL;
- }
-
- *p = f;
- Py_RETURN_NONE;
-}
-
-PyDoc_STRVAR(float_setformat_doc,
-"float.__setformat__(tstr, fmt) -> None\n"
-"\n"
-"You probably don't want to use this function. It exists mainly to be\n"
-"used in Python's test suite.\n"
-"\n"
-"tstr must be 'double' or 'float'. fmt must be one of 'unknown',\n"
-"'IEEE, big-endian' or 'IEEE, little-endian', and in addition can only be\n"
-"one of the latter two if it appears to match the underlying C reality.\n"
-"\n"
-"Overrides the automatic determination of C-level floating point type.\n"
-"This affects how floats are converted to and from binary strings.");
-
-static PyMethodDef float_methods[] = {
- {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
- {"__getformat__", (PyCFunction)float_getformat,
- METH_O|METH_CLASS, float_getformat_doc},
- {"__setformat__", (PyCFunction)float_setformat,
- METH_VARARGS|METH_CLASS, float_setformat_doc},
- {NULL, NULL} /* sentinel */
-};
-
-PyDoc_STRVAR(float_doc,
-"float(x) -> floating point number\n\
-\n\
-Convert a string or number to a floating point number, if possible.");
-
-
-static PyNumberMethods float_as_number = {
- float_add, /*nb_add*/
- float_sub, /*nb_subtract*/
- float_mul, /*nb_multiply*/
- float_classic_div, /*nb_divide*/
- float_rem, /*nb_remainder*/
- float_divmod, /*nb_divmod*/
- float_pow, /*nb_power*/
- (unaryfunc)float_neg, /*nb_negative*/
- (unaryfunc)float_pos, /*nb_positive*/
- (unaryfunc)float_abs, /*nb_absolute*/
- (inquiry)float_nonzero, /*nb_nonzero*/
- 0, /*nb_invert*/
- 0, /*nb_lshift*/
- 0, /*nb_rshift*/
- 0, /*nb_and*/
- 0, /*nb_xor*/
- 0, /*nb_or*/
- float_coerce, /*nb_coerce*/
- float_int, /*nb_int*/
- float_long, /*nb_long*/
- float_float, /*nb_float*/
- 0, /* nb_oct */
- 0, /* nb_hex */
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_divide */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- float_floor_div, /* nb_floor_divide */
- float_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
-};
-
-PyTypeObject PyFloat_Type = {
- PyObject_HEAD_INIT(&PyType_Type)
- 0,
- "float",
- sizeof(PyFloatObject),
- 0,
- (destructor)float_dealloc, /* tp_dealloc */
- (printfunc)float_print, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_compare */
- (reprfunc)float_repr, /* tp_repr */
- &float_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)float_hash, /* tp_hash */
- 0, /* tp_call */
- (reprfunc)float_str, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
- Py_TPFLAGS_BASETYPE, /* tp_flags */
- float_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- float_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- float_methods, /* tp_methods */
- 0, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- float_new, /* tp_new */
-};
-
-void
-_PyFloat_Init(void)
-{
- /* We attempt to determine if this machine is using IEEE
- floating point formats by peering at the bits of some
- carefully chosen values. If it looks like we are on an
- IEEE platform, the float packing/unpacking routines can
- just copy bits, if not they resort to arithmetic & shifts
- and masks. The shifts & masks approach works on all finite
- values, but what happens to infinities, NaNs and signed
- zeroes on packing is an accident, and attempting to unpack
- a NaN or an infinity will raise an exception.
-
- Note that if we're on some whacked-out platform which uses
- IEEE formats but isn't strictly little-endian or big-
- endian, we will fall back to the portable shifts & masks
- method. */
-
-#if SIZEOF_DOUBLE == 8
- {
- double x = 9006104071832581.0;
- if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
- detected_double_format = ieee_big_endian_format;
- else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
- detected_double_format = ieee_little_endian_format;
- else
- detected_double_format = unknown_format;
- }
-#else
- detected_double_format = unknown_format;
-#endif
-
-#if SIZEOF_FLOAT == 4
- {
- float y = 16711938.0;
- if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
- detected_float_format = ieee_big_endian_format;
- else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
- detected_float_format = ieee_little_endian_format;
- else
- detected_float_format = unknown_format;
- }
-#else
- detected_float_format = unknown_format;
-#endif
-
- double_format = detected_double_format;
- float_format = detected_float_format;
-}
-
-void
-PyFloat_Fini(void)
-{
- PyFloatObject *p;
- PyFloatBlock *list, *next;
- unsigned i;
- int bc, bf; /* block count, number of freed blocks */
- int frem, fsum; /* remaining unfreed floats per block, total */
-
- bc = 0;
- bf = 0;
- fsum = 0;
- list = block_list;
- block_list = NULL;
- free_list = NULL;
- while (list != NULL) {
- bc++;
- frem = 0;
- for (i = 0, p = &list->objects[0];
- i < N_FLOATOBJECTS;
- i++, p++) {
- if (PyFloat_CheckExact(p) && p->ob_refcnt != 0)
- frem++;
- }
- next = list->next;
- if (frem) {
- list->next = block_list;
- block_list = list;
- for (i = 0, p = &list->objects[0];
- i < N_FLOATOBJECTS;
- i++, p++) {
- if (!PyFloat_CheckExact(p) ||
- p->ob_refcnt == 0) {
- p->ob_type = (struct _typeobject *)
- free_list;
- free_list = p;
- }
- }
- }
- else {
- PyMem_FREE(list); /* XXX PyObject_FREE ??? */
- bf++;
- }
- fsum += frem;
- list = next;
- }
- if (!Py_VerboseFlag)
- return;
- fprintf(stderr, "# cleanup floats");
- if (!fsum) {
- fprintf(stderr, "\n");
- }
- else {
- fprintf(stderr,
- ": %d unfreed float%s in %d out of %d block%s\n",
- fsum, fsum == 1 ? "" : "s",
- bc - bf, bc, bc == 1 ? "" : "s");
- }
- if (Py_VerboseFlag > 1) {
- list = block_list;
- while (list != NULL) {
- for (i = 0, p = &list->objects[0];
- i < N_FLOATOBJECTS;
- i++, p++) {
- if (PyFloat_CheckExact(p) &&
- p->ob_refcnt != 0) {
- char buf[100];
- PyFloat_AsString(buf, p);
- /* XXX(twouters) cast refcount to
- long until %zd is universally
- available
- */
- fprintf(stderr,
- "# <float at %p, refcnt=%ld, val=%s>\n",
- p, (long)p->ob_refcnt, buf);
- }
- }
- list = list->next;
- }
- }
-}
-
-/*----------------------------------------------------------------------------
- * _PyFloat_{Pack,Unpack}{4,8}. See floatobject.h.
- *
- * TODO: On platforms that use the standard IEEE-754 single and double
- * formats natively, these routines could simply copy the bytes.
- */
-int
-_PyFloat_Pack4(double x, unsigned char *p, int le)
-{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fbits;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 128)
- goto Overflow;
- else if (e < -126) {
- /* Gradual underflow */
- f = ldexp(f, 126 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 127;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 8388608.0; /* 2**23 */
- fbits = (unsigned int)(f + 0.5); /* Round */
- assert(fbits <= 8388608);
- if (fbits >> 23) {
- /* The carry propagated out of a string of 23 1 bits. */
- fbits = 0;
- ++e;
- if (e >= 255)
- goto Overflow;
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 1);
- p += incr;
-
- /* Second byte */
- *p = (char) (((e & 1) << 7) | (fbits >> 16));
- p += incr;
-
- /* Third byte */
- *p = (fbits >> 8) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = fbits & 0xFF;
-
- /* Done */
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with f format");
- return -1;
- }
- else {
- float y = (float)x;
- const char *s = (char*)&y;
- int i, incr = 1;
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- p += 3;
- incr = -1;
- }
-
- for (i = 0; i < 4; i++) {
- *p = *s++;
- p += incr;
- }
- return 0;
- }
-}
-
-int
-_PyFloat_Pack8(double x, unsigned char *p, int le)
-{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fhi, flo;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 1024)
- goto Overflow;
- else if (e < -1022) {
- /* Gradual underflow */
- f = ldexp(f, 1022 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 1023;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
- f *= 268435456.0; /* 2**28 */
- fhi = (unsigned int)f; /* Truncate */
- assert(fhi < 268435456);
-
- f -= (double)fhi;
- f *= 16777216.0; /* 2**24 */
- flo = (unsigned int)(f + 0.5); /* Round */
- assert(flo <= 16777216);
- if (flo >> 24) {
- /* The carry propagated out of a string of 24 1 bits. */
- flo = 0;
- ++fhi;
- if (fhi >> 28) {
- /* And it also progagated out of the next 28 bits. */
- fhi = 0;
- ++e;
- if (e >= 2047)
- goto Overflow;
- }
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 4);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
- p += incr;
-
- /* Third byte */
- *p = (fhi >> 16) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = (fhi >> 8) & 0xFF;
- p += incr;
-
- /* Fifth byte */
- *p = fhi & 0xFF;
- p += incr;
-
- /* Sixth byte */
- *p = (flo >> 16) & 0xFF;
- p += incr;
-
- /* Seventh byte */
- *p = (flo >> 8) & 0xFF;
- p += incr;
-
- /* Eighth byte */
- *p = flo & 0xFF;
- p += incr;
-
- /* Done */
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with d format");
- return -1;
- }
- else {
- const char *s = (char*)&x;
- int i, incr = 1;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- p += 7;
- incr = -1;
- }
-
- for (i = 0; i < 8; i++) {
- *p = *s++;
- p += incr;
- }
- return 0;
- }
-}
-
-double
-_PyFloat_Unpack4(const unsigned char *p, int le)
-{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 1;
- p += incr;
-
- /* Second byte */
- e |= (*p >> 7) & 1;
- f = (*p & 0x7F) << 16;
- p += incr;
-
- if (e == 255) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1;
- }
-
- /* Third byte */
- f |= *p << 8;
- p += incr;
-
- /* Fourth byte */
- f |= *p;
-
- x = (double)f / 8388608.0;
-
- /* XXX This sadly ignores Inf/NaN issues */
- if (e == 0)
- e = -126;
- else {
- x += 1.0;
- e -= 127;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- float x;
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- char buf[4];
- char *d = &buf[3];
- int i;
-
- for (i = 0; i < 4; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 4);
- }
- else {
- memcpy(&x, p, 4);
- }
-
- return x;
- }
-}
-
-double
-_PyFloat_Unpack8(const unsigned char *p, int le)
-{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int fhi, flo;
- double x;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 4;
-
- p += incr;
-
- /* Second byte */
- e |= (*p >> 4) & 0xF;
- fhi = (*p & 0xF) << 24;
- p += incr;
-
- if (e == 2047) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1.0;
- }
-
- /* Third byte */
- fhi |= *p << 16;
- p += incr;
-
- /* Fourth byte */
- fhi |= *p << 8;
- p += incr;
-
- /* Fifth byte */
- fhi |= *p;
- p += incr;
-
- /* Sixth byte */
- flo = *p << 16;
- p += incr;
-
- /* Seventh byte */
- flo |= *p << 8;
- p += incr;
-
- /* Eighth byte */
- flo |= *p;
-
- x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
- x /= 268435456.0; /* 2**28 */
-
- if (e == 0)
- e = -1022;
- else {
- x += 1.0;
- e -= 1023;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- double x;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- char buf[8];
- char *d = &buf[7];
- int i;
-
- for (i = 0; i < 8; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 8);
- }
- else {
- memcpy(&x, p, 8);
- }
-
- return x;
- }
-}