diff options
author | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
---|---|---|
committer | Ori Bernstein <ori@eigenstate.org> | 2021-06-14 00:00:37 +0000 |
commit | a73a964e51247ed169d322c725a3a18859f109a3 (patch) | |
tree | 3f752d117274d444bda44e85609aeac1acf313f3 /sys/src/cmd/python/Objects/obmalloc.c | |
parent | e64efe273fcb921a61bf27d33b230c4e64fcd425 (diff) |
python, hg: tow outside the environment.
they've served us well, and can ride off into the sunset.
Diffstat (limited to 'sys/src/cmd/python/Objects/obmalloc.c')
-rw-r--r-- | sys/src/cmd/python/Objects/obmalloc.c | 1745 |
1 files changed, 0 insertions, 1745 deletions
diff --git a/sys/src/cmd/python/Objects/obmalloc.c b/sys/src/cmd/python/Objects/obmalloc.c deleted file mode 100644 index 840570e06..000000000 --- a/sys/src/cmd/python/Objects/obmalloc.c +++ /dev/null @@ -1,1745 +0,0 @@ -#include "Python.h" - -#ifdef WITH_PYMALLOC - -/* An object allocator for Python. - - Here is an introduction to the layers of the Python memory architecture, - showing where the object allocator is actually used (layer +2), It is - called for every object allocation and deallocation (PyObject_New/Del), - unless the object-specific allocators implement a proprietary allocation - scheme (ex.: ints use a simple free list). This is also the place where - the cyclic garbage collector operates selectively on container objects. - - - Object-specific allocators - _____ ______ ______ ________ - [ int ] [ dict ] [ list ] ... [ string ] Python core | -+3 | <----- Object-specific memory -----> | <-- Non-object memory --> | - _______________________________ | | - [ Python's object allocator ] | | -+2 | ####### Object memory ####### | <------ Internal buffers ------> | - ______________________________________________________________ | - [ Python's raw memory allocator (PyMem_ API) ] | -+1 | <----- Python memory (under PyMem manager's control) ------> | | - __________________________________________________________________ - [ Underlying general-purpose allocator (ex: C library malloc) ] - 0 | <------ Virtual memory allocated for the python process -------> | - - ========================================================================= - _______________________________________________________________________ - [ OS-specific Virtual Memory Manager (VMM) ] --1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | - __________________________________ __________________________________ - [ ] [ ] --2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | - -*/ -/*==========================================================================*/ - -/* A fast, special-purpose memory allocator for small blocks, to be used - on top of a general-purpose malloc -- heavily based on previous art. */ - -/* Vladimir Marangozov -- August 2000 */ - -/* - * "Memory management is where the rubber meets the road -- if we do the wrong - * thing at any level, the results will not be good. And if we don't make the - * levels work well together, we are in serious trouble." (1) - * - * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, - * "Dynamic Storage Allocation: A Survey and Critical Review", - * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. - */ - -/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ - -/*==========================================================================*/ - -/* - * Allocation strategy abstract: - * - * For small requests, the allocator sub-allocates <Big> blocks of memory. - * Requests greater than 256 bytes are routed to the system's allocator. - * - * Small requests are grouped in size classes spaced 8 bytes apart, due - * to the required valid alignment of the returned address. Requests of - * a particular size are serviced from memory pools of 4K (one VMM page). - * Pools are fragmented on demand and contain free lists of blocks of one - * particular size class. In other words, there is a fixed-size allocator - * for each size class. Free pools are shared by the different allocators - * thus minimizing the space reserved for a particular size class. - * - * This allocation strategy is a variant of what is known as "simple - * segregated storage based on array of free lists". The main drawback of - * simple segregated storage is that we might end up with lot of reserved - * memory for the different free lists, which degenerate in time. To avoid - * this, we partition each free list in pools and we share dynamically the - * reserved space between all free lists. This technique is quite efficient - * for memory intensive programs which allocate mainly small-sized blocks. - * - * For small requests we have the following table: - * - * Request in bytes Size of allocated block Size class idx - * ---------------------------------------------------------------- - * 1-8 8 0 - * 9-16 16 1 - * 17-24 24 2 - * 25-32 32 3 - * 33-40 40 4 - * 41-48 48 5 - * 49-56 56 6 - * 57-64 64 7 - * 65-72 72 8 - * ... ... ... - * 241-248 248 30 - * 249-256 256 31 - * - * 0, 257 and up: routed to the underlying allocator. - */ - -/*==========================================================================*/ - -/* - * -- Main tunable settings section -- - */ - -/* - * Alignment of addresses returned to the user. 8-bytes alignment works - * on most current architectures (with 32-bit or 64-bit address busses). - * The alignment value is also used for grouping small requests in size - * classes spaced ALIGNMENT bytes apart. - * - * You shouldn't change this unless you know what you are doing. - */ -#define ALIGNMENT 8 /* must be 2^N */ -#define ALIGNMENT_SHIFT 3 -#define ALIGNMENT_MASK (ALIGNMENT - 1) - -/* Return the number of bytes in size class I, as a uint. */ -#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT) - -/* - * Max size threshold below which malloc requests are considered to be - * small enough in order to use preallocated memory pools. You can tune - * this value according to your application behaviour and memory needs. - * - * The following invariants must hold: - * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256 - * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT - * - * Although not required, for better performance and space efficiency, - * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. - */ -#define SMALL_REQUEST_THRESHOLD 256 -#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) - -/* - * The system's VMM page size can be obtained on most unices with a - * getpagesize() call or deduced from various header files. To make - * things simpler, we assume that it is 4K, which is OK for most systems. - * It is probably better if this is the native page size, but it doesn't - * have to be. In theory, if SYSTEM_PAGE_SIZE is larger than the native page - * size, then `POOL_ADDR(p)->arenaindex' could rarely cause a segmentation - * violation fault. 4K is apparently OK for all the platforms that python - * currently targets. - */ -#define SYSTEM_PAGE_SIZE (4 * 1024) -#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1) - -/* - * Maximum amount of memory managed by the allocator for small requests. - */ -#ifdef WITH_MEMORY_LIMITS -#ifndef SMALL_MEMORY_LIMIT -#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ -#endif -#endif - -/* - * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned - * on a page boundary. This is a reserved virtual address space for the - * current process (obtained through a malloc call). In no way this means - * that the memory arenas will be used entirely. A malloc(<Big>) is usually - * an address range reservation for <Big> bytes, unless all pages within this - * space are referenced subsequently. So malloc'ing big blocks and not using - * them does not mean "wasting memory". It's an addressable range wastage... - * - * Therefore, allocating arenas with malloc is not optimal, because there is - * some address space wastage, but this is the most portable way to request - * memory from the system across various platforms. - */ -#define ARENA_SIZE (256 << 10) /* 256KB */ - -#ifdef WITH_MEMORY_LIMITS -#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) -#endif - -/* - * Size of the pools used for small blocks. Should be a power of 2, - * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k. - */ -#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */ -#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK - -/* - * -- End of tunable settings section -- - */ - -/*==========================================================================*/ - -/* - * Locking - * - * To reduce lock contention, it would probably be better to refine the - * crude function locking with per size class locking. I'm not positive - * however, whether it's worth switching to such locking policy because - * of the performance penalty it might introduce. - * - * The following macros describe the simplest (should also be the fastest) - * lock object on a particular platform and the init/fini/lock/unlock - * operations on it. The locks defined here are not expected to be recursive - * because it is assumed that they will always be called in the order: - * INIT, [LOCK, UNLOCK]*, FINI. - */ - -/* - * Python's threads are serialized, so object malloc locking is disabled. - */ -#define SIMPLELOCK_DECL(lock) /* simple lock declaration */ -#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */ -#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */ -#define SIMPLELOCK_LOCK(lock) /* acquire released lock */ -#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */ - -/* - * Basic types - * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom. - */ -#undef uchar -#define uchar unsigned char /* assuming == 8 bits */ - -#undef uint -#define uint unsigned int /* assuming >= 16 bits */ - -#undef ulong -#define ulong unsigned long /* assuming >= 32 bits */ - -#undef uptr -#define uptr Py_uintptr_t - -/* When you say memory, my mind reasons in terms of (pointers to) blocks */ -typedef uchar block; - -/* Pool for small blocks. */ -struct pool_header { - union { block *_padding; - uint count; } ref; /* number of allocated blocks */ - block *freeblock; /* pool's free list head */ - struct pool_header *nextpool; /* next pool of this size class */ - struct pool_header *prevpool; /* previous pool "" */ - uint arenaindex; /* index into arenas of base adr */ - uint szidx; /* block size class index */ - uint nextoffset; /* bytes to virgin block */ - uint maxnextoffset; /* largest valid nextoffset */ -}; - -typedef struct pool_header *poolp; - -/* Record keeping for arenas. */ -struct arena_object { - /* The address of the arena, as returned by malloc. Note that 0 - * will never be returned by a successful malloc, and is used - * here to mark an arena_object that doesn't correspond to an - * allocated arena. - */ - uptr address; - - /* Pool-aligned pointer to the next pool to be carved off. */ - block* pool_address; - - /* The number of available pools in the arena: free pools + never- - * allocated pools. - */ - uint nfreepools; - - /* The total number of pools in the arena, whether or not available. */ - uint ntotalpools; - - /* Singly-linked list of available pools. */ - struct pool_header* freepools; - - /* Whenever this arena_object is not associated with an allocated - * arena, the nextarena member is used to link all unassociated - * arena_objects in the singly-linked `unused_arena_objects` list. - * The prevarena member is unused in this case. - * - * When this arena_object is associated with an allocated arena - * with at least one available pool, both members are used in the - * doubly-linked `usable_arenas` list, which is maintained in - * increasing order of `nfreepools` values. - * - * Else this arena_object is associated with an allocated arena - * all of whose pools are in use. `nextarena` and `prevarena` - * are both meaningless in this case. - */ - struct arena_object* nextarena; - struct arena_object* prevarena; -}; - -#undef ROUNDUP -#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK) -#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header)) - -#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ - -/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */ -#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK)) - -/* Return total number of blocks in pool of size index I, as a uint. */ -#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I)) - -/*==========================================================================*/ - -/* - * This malloc lock - */ -SIMPLELOCK_DECL(_malloc_lock) -#define LOCK() SIMPLELOCK_LOCK(_malloc_lock) -#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock) -#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock) -#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock) - -/* - * Pool table -- headed, circular, doubly-linked lists of partially used pools. - -This is involved. For an index i, usedpools[i+i] is the header for a list of -all partially used pools holding small blocks with "size class idx" i. So -usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size -16, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT. - -Pools are carved off an arena's highwater mark (an arena_object's pool_address -member) as needed. Once carved off, a pool is in one of three states forever -after: - -used == partially used, neither empty nor full - At least one block in the pool is currently allocated, and at least one - block in the pool is not currently allocated (note this implies a pool - has room for at least two blocks). - This is a pool's initial state, as a pool is created only when malloc - needs space. - The pool holds blocks of a fixed size, and is in the circular list headed - at usedpools[i] (see above). It's linked to the other used pools of the - same size class via the pool_header's nextpool and prevpool members. - If all but one block is currently allocated, a malloc can cause a - transition to the full state. If all but one block is not currently - allocated, a free can cause a transition to the empty state. - -full == all the pool's blocks are currently allocated - On transition to full, a pool is unlinked from its usedpools[] list. - It's not linked to from anything then anymore, and its nextpool and - prevpool members are meaningless until it transitions back to used. - A free of a block in a full pool puts the pool back in the used state. - Then it's linked in at the front of the appropriate usedpools[] list, so - that the next allocation for its size class will reuse the freed block. - -empty == all the pool's blocks are currently available for allocation - On transition to empty, a pool is unlinked from its usedpools[] list, - and linked to the front of its arena_object's singly-linked freepools list, - via its nextpool member. The prevpool member has no meaning in this case. - Empty pools have no inherent size class: the next time a malloc finds - an empty list in usedpools[], it takes the first pool off of freepools. - If the size class needed happens to be the same as the size class the pool - last had, some pool initialization can be skipped. - - -Block Management - -Blocks within pools are again carved out as needed. pool->freeblock points to -the start of a singly-linked list of free blocks within the pool. When a -block is freed, it's inserted at the front of its pool's freeblock list. Note -that the available blocks in a pool are *not* linked all together when a pool -is initialized. Instead only "the first two" (lowest addresses) blocks are -set up, returning the first such block, and setting pool->freeblock to a -one-block list holding the second such block. This is consistent with that -pymalloc strives at all levels (arena, pool, and block) never to touch a piece -of memory until it's actually needed. - -So long as a pool is in the used state, we're certain there *is* a block -available for allocating, and pool->freeblock is not NULL. If pool->freeblock -points to the end of the free list before we've carved the entire pool into -blocks, that means we simply haven't yet gotten to one of the higher-address -blocks. The offset from the pool_header to the start of "the next" virgin -block is stored in the pool_header nextoffset member, and the largest value -of nextoffset that makes sense is stored in the maxnextoffset member when a -pool is initialized. All the blocks in a pool have been passed out at least -once when and only when nextoffset > maxnextoffset. - - -Major obscurity: While the usedpools vector is declared to have poolp -entries, it doesn't really. It really contains two pointers per (conceptual) -poolp entry, the nextpool and prevpool members of a pool_header. The -excruciating initialization code below fools C so that - - usedpool[i+i] - -"acts like" a genuine poolp, but only so long as you only reference its -nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is -compensating for that a pool_header's nextpool and prevpool members -immediately follow a pool_header's first two members: - - union { block *_padding; - uint count; } ref; - block *freeblock; - -each of which consume sizeof(block *) bytes. So what usedpools[i+i] really -contains is a fudged-up pointer p such that *if* C believes it's a poolp -pointer, then p->nextpool and p->prevpool are both p (meaning that the headed -circular list is empty). - -It's unclear why the usedpools setup is so convoluted. It could be to -minimize the amount of cache required to hold this heavily-referenced table -(which only *needs* the two interpool pointer members of a pool_header). OTOH, -referencing code has to remember to "double the index" and doing so isn't -free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying -on that C doesn't insert any padding anywhere in a pool_header at or before -the prevpool member. -**************************************************************************** */ - -#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *))) -#define PT(x) PTA(x), PTA(x) - -static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { - PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) -#if NB_SMALL_SIZE_CLASSES > 8 - , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) -#if NB_SMALL_SIZE_CLASSES > 16 - , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) -#if NB_SMALL_SIZE_CLASSES > 24 - , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) -#if NB_SMALL_SIZE_CLASSES > 32 - , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) -#if NB_SMALL_SIZE_CLASSES > 40 - , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) -#if NB_SMALL_SIZE_CLASSES > 48 - , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) -#if NB_SMALL_SIZE_CLASSES > 56 - , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) -#endif /* NB_SMALL_SIZE_CLASSES > 56 */ -#endif /* NB_SMALL_SIZE_CLASSES > 48 */ -#endif /* NB_SMALL_SIZE_CLASSES > 40 */ -#endif /* NB_SMALL_SIZE_CLASSES > 32 */ -#endif /* NB_SMALL_SIZE_CLASSES > 24 */ -#endif /* NB_SMALL_SIZE_CLASSES > 16 */ -#endif /* NB_SMALL_SIZE_CLASSES > 8 */ -}; - -/*========================================================================== -Arena management. - -`arenas` is a vector of arena_objects. It contains maxarenas entries, some of -which may not be currently used (== they're arena_objects that aren't -currently associated with an allocated arena). Note that arenas proper are -separately malloc'ed. - -Prior to Python 2.5, arenas were never free()'ed. Starting with Python 2.5, -we do try to free() arenas, and use some mild heuristic strategies to increase -the likelihood that arenas eventually can be freed. - -unused_arena_objects - - This is a singly-linked list of the arena_objects that are currently not - being used (no arena is associated with them). Objects are taken off the - head of the list in new_arena(), and are pushed on the head of the list in - PyObject_Free() when the arena is empty. Key invariant: an arena_object - is on this list if and only if its .address member is 0. - -usable_arenas - - This is a doubly-linked list of the arena_objects associated with arenas - that have pools available. These pools are either waiting to be reused, - or have not been used before. The list is sorted to have the most- - allocated arenas first (ascending order based on the nfreepools member). - This means that the next allocation will come from a heavily used arena, - which gives the nearly empty arenas a chance to be returned to the system. - In my unscientific tests this dramatically improved the number of arenas - that could be freed. - -Note that an arena_object associated with an arena all of whose pools are -currently in use isn't on either list. -*/ - -/* Array of objects used to track chunks of memory (arenas). */ -static struct arena_object* arenas = NULL; -/* Number of slots currently allocated in the `arenas` vector. */ -static uint maxarenas = 0; - -/* The head of the singly-linked, NULL-terminated list of available - * arena_objects. - */ -static struct arena_object* unused_arena_objects = NULL; - -/* The head of the doubly-linked, NULL-terminated at each end, list of - * arena_objects associated with arenas that have pools available. - */ -static struct arena_object* usable_arenas = NULL; - -/* How many arena_objects do we initially allocate? - * 16 = can allocate 16 arenas = 16 * ARENA_SIZE = 4MB before growing the - * `arenas` vector. - */ -#define INITIAL_ARENA_OBJECTS 16 - -/* Number of arenas allocated that haven't been free()'d. */ -static size_t narenas_currently_allocated = 0; - -#ifdef PYMALLOC_DEBUG -/* Total number of times malloc() called to allocate an arena. */ -static size_t ntimes_arena_allocated = 0; -/* High water mark (max value ever seen) for narenas_currently_allocated. */ -static size_t narenas_highwater = 0; -#endif - -/* Allocate a new arena. If we run out of memory, return NULL. Else - * allocate a new arena, and return the address of an arena_object - * describing the new arena. It's expected that the caller will set - * `usable_arenas` to the return value. - */ -static struct arena_object* -new_arena(void) -{ - struct arena_object* arenaobj; - uint excess; /* number of bytes above pool alignment */ - -#ifdef PYMALLOC_DEBUG - if (Py_GETENV("PYTHONMALLOCSTATS")) - _PyObject_DebugMallocStats(); -#endif - if (unused_arena_objects == NULL) { - uint i; - uint numarenas; - size_t nbytes; - - /* Double the number of arena objects on each allocation. - * Note that it's possible for `numarenas` to overflow. - */ - numarenas = maxarenas ? maxarenas << 1 : INITIAL_ARENA_OBJECTS; - if (numarenas <= maxarenas) - return NULL; /* overflow */ - nbytes = numarenas * sizeof(*arenas); - if (nbytes / sizeof(*arenas) != numarenas) - return NULL; /* overflow */ - arenaobj = (struct arena_object *)realloc(arenas, nbytes); - if (arenaobj == NULL) - return NULL; - arenas = arenaobj; - - /* We might need to fix pointers that were copied. However, - * new_arena only gets called when all the pages in the - * previous arenas are full. Thus, there are *no* pointers - * into the old array. Thus, we don't have to worry about - * invalid pointers. Just to be sure, some asserts: - */ - assert(usable_arenas == NULL); - assert(unused_arena_objects == NULL); - - /* Put the new arenas on the unused_arena_objects list. */ - for (i = maxarenas; i < numarenas; ++i) { - arenas[i].address = 0; /* mark as unassociated */ - arenas[i].nextarena = i < numarenas - 1 ? - &arenas[i+1] : NULL; - } - - /* Update globals. */ - unused_arena_objects = &arenas[maxarenas]; - maxarenas = numarenas; - } - - /* Take the next available arena object off the head of the list. */ - assert(unused_arena_objects != NULL); - arenaobj = unused_arena_objects; - unused_arena_objects = arenaobj->nextarena; - assert(arenaobj->address == 0); - arenaobj->address = (uptr)malloc(ARENA_SIZE); - if (arenaobj->address == 0) { - /* The allocation failed: return NULL after putting the - * arenaobj back. - */ - arenaobj->nextarena = unused_arena_objects; - unused_arena_objects = arenaobj; - return NULL; - } - - ++narenas_currently_allocated; -#ifdef PYMALLOC_DEBUG - ++ntimes_arena_allocated; - if (narenas_currently_allocated > narenas_highwater) - narenas_highwater = narenas_currently_allocated; -#endif - arenaobj->freepools = NULL; - /* pool_address <- first pool-aligned address in the arena - nfreepools <- number of whole pools that fit after alignment */ - arenaobj->pool_address = (block*)arenaobj->address; - arenaobj->nfreepools = ARENA_SIZE / POOL_SIZE; - assert(POOL_SIZE * arenaobj->nfreepools == ARENA_SIZE); - excess = (uint)(arenaobj->address & POOL_SIZE_MASK); - if (excess != 0) { - --arenaobj->nfreepools; - arenaobj->pool_address += POOL_SIZE - excess; - } - arenaobj->ntotalpools = arenaobj->nfreepools; - - return arenaobj; -} - -/* -Py_ADDRESS_IN_RANGE(P, POOL) - -Return true if and only if P is an address that was allocated by pymalloc. -POOL must be the pool address associated with P, i.e., POOL = POOL_ADDR(P) -(the caller is asked to compute this because the macro expands POOL more than -once, and for efficiency it's best for the caller to assign POOL_ADDR(P) to a -variable and pass the latter to the macro; because Py_ADDRESS_IN_RANGE is -called on every alloc/realloc/free, micro-efficiency is important here). - -Tricky: Let B be the arena base address associated with the pool, B = -arenas[(POOL)->arenaindex].address. Then P belongs to the arena if and only if - - B <= P < B + ARENA_SIZE - -Subtracting B throughout, this is true iff - - 0 <= P-B < ARENA_SIZE - -By using unsigned arithmetic, the "0 <=" half of the test can be skipped. - -Obscure: A PyMem "free memory" function can call the pymalloc free or realloc -before the first arena has been allocated. `arenas` is still NULL in that -case. We're relying on that maxarenas is also 0 in that case, so that -(POOL)->arenaindex < maxarenas must be false, saving us from trying to index -into a NULL arenas. - -Details: given P and POOL, the arena_object corresponding to P is AO = -arenas[(POOL)->arenaindex]. Suppose obmalloc controls P. Then (barring wild -stores, etc), POOL is the correct address of P's pool, AO.address is the -correct base address of the pool's arena, and P must be within ARENA_SIZE of -AO.address. In addition, AO.address is not 0 (no arena can start at address 0 -(NULL)). Therefore Py_ADDRESS_IN_RANGE correctly reports that obmalloc -controls P. - -Now suppose obmalloc does not control P (e.g., P was obtained via a direct -call to the system malloc() or realloc()). (POOL)->arenaindex may be anything -in this case -- it may even be uninitialized trash. If the trash arenaindex -is >= maxarenas, the macro correctly concludes at once that obmalloc doesn't -control P. - -Else arenaindex is < maxarena, and AO is read up. If AO corresponds to an -allocated arena, obmalloc controls all the memory in slice AO.address : -AO.address+ARENA_SIZE. By case assumption, P is not controlled by obmalloc, -so P doesn't lie in that slice, so the macro correctly reports that P is not -controlled by obmalloc. - -Finally, if P is not controlled by obmalloc and AO corresponds to an unused -arena_object (one not currently associated with an allocated arena), -AO.address is 0, and the second test in the macro reduces to: - - P < ARENA_SIZE - -If P >= ARENA_SIZE (extremely likely), the macro again correctly concludes -that P is not controlled by obmalloc. However, if P < ARENA_SIZE, this part -of the test still passes, and the third clause (AO.address != 0) is necessary -to get the correct result: AO.address is 0 in this case, so the macro -correctly reports that P is not controlled by obmalloc (despite that P lies in -slice AO.address : AO.address + ARENA_SIZE). - -Note: The third (AO.address != 0) clause was added in Python 2.5. Before -2.5, arenas were never free()'ed, and an arenaindex < maxarena always -corresponded to a currently-allocated arena, so the "P is not controlled by -obmalloc, AO corresponds to an unused arena_object, and P < ARENA_SIZE" case -was impossible. - -Note that the logic is excruciating, and reading up possibly uninitialized -memory when P is not controlled by obmalloc (to get at (POOL)->arenaindex) -creates problems for some memory debuggers. The overwhelming advantage is -that this test determines whether an arbitrary address is controlled by -obmalloc in a small constant time, independent of the number of arenas -obmalloc controls. Since this test is needed at every entry point, it's -extremely desirable that it be this fast. -*/ -#define Py_ADDRESS_IN_RANGE(P, POOL) \ - ((POOL)->arenaindex < maxarenas && \ - (uptr)(P) - arenas[(POOL)->arenaindex].address < (uptr)ARENA_SIZE && \ - arenas[(POOL)->arenaindex].address != 0) - - -/* This is only useful when running memory debuggers such as - * Purify or Valgrind. Uncomment to use. - * -#define Py_USING_MEMORY_DEBUGGER - */ - -#ifdef Py_USING_MEMORY_DEBUGGER - -/* Py_ADDRESS_IN_RANGE may access uninitialized memory by design - * This leads to thousands of spurious warnings when using - * Purify or Valgrind. By making a function, we can easily - * suppress the uninitialized memory reads in this one function. - * So we won't ignore real errors elsewhere. - * - * Disable the macro and use a function. - */ - -#undef Py_ADDRESS_IN_RANGE - -#if defined(__GNUC__) && ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) || \ - (__GNUC__ >= 4)) -#define Py_NO_INLINE __attribute__((__noinline__)) -#else -#define Py_NO_INLINE -#endif - -/* Don't make static, to try to ensure this isn't inlined. */ -int Py_ADDRESS_IN_RANGE(void *P, poolp pool) Py_NO_INLINE; -#undef Py_NO_INLINE -#endif - -/*==========================================================================*/ - -/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct - * from all other currently live pointers. This may not be possible. - */ - -/* - * The basic blocks are ordered by decreasing execution frequency, - * which minimizes the number of jumps in the most common cases, - * improves branching prediction and instruction scheduling (small - * block allocations typically result in a couple of instructions). - * Unless the optimizer reorders everything, being too smart... - */ - -#undef PyObject_Malloc -void * -PyObject_Malloc(size_t nbytes) -{ - block *bp; - poolp pool; - poolp next; - uint size; - - /* - * This implicitly redirects malloc(0). - */ - if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) { - LOCK(); - /* - * Most frequent paths first - */ - size = (uint)(nbytes - 1) >> ALIGNMENT_SHIFT; - pool = usedpools[size + size]; - if (pool != pool->nextpool) { - /* - * There is a used pool for this size class. - * Pick up the head block of its free list. - */ - ++pool->ref.count; - bp = pool->freeblock; - assert(bp != NULL); - if ((pool->freeblock = *(block **)bp) != NULL) { - UNLOCK(); - return (void *)bp; - } - /* - * Reached the end of the free list, try to extend it. - */ - if (pool->nextoffset <= pool->maxnextoffset) { - /* There is room for another block. */ - pool->freeblock = (block*)pool + - pool->nextoffset; - pool->nextoffset += INDEX2SIZE(size); - *(block **)(pool->freeblock) = NULL; - UNLOCK(); - return (void *)bp; - } - /* Pool is full, unlink from used pools. */ - next = pool->nextpool; - pool = pool->prevpool; - next->prevpool = pool; - pool->nextpool = next; - UNLOCK(); - return (void *)bp; - } - - /* There isn't a pool of the right size class immediately - * available: use a free pool. - */ - if (usable_arenas == NULL) { - /* No arena has a free pool: allocate a new arena. */ -#ifdef WITH_MEMORY_LIMITS - if (narenas_currently_allocated >= MAX_ARENAS) { - UNLOCK(); - goto redirect; - } -#endif - usable_arenas = new_arena(); - if (usable_arenas == NULL) { - UNLOCK(); - goto redirect; - } - usable_arenas->nextarena = - usable_arenas->prevarena = NULL; - } - assert(usable_arenas->address != 0); - - /* Try to get a cached free pool. */ - pool = usable_arenas->freepools; - if (pool != NULL) { - /* Unlink from cached pools. */ - usable_arenas->freepools = pool->nextpool; - - /* This arena already had the smallest nfreepools - * value, so decreasing nfreepools doesn't change - * that, and we don't need to rearrange the - * usable_arenas list. However, if the arena has - * become wholly allocated, we need to remove its - * arena_object from usable_arenas. - */ - --usable_arenas->nfreepools; - if (usable_arenas->nfreepools == 0) { - /* Wholly allocated: remove. */ - assert(usable_arenas->freepools == NULL); - assert(usable_arenas->nextarena == NULL || - usable_arenas->nextarena->prevarena == - usable_arenas); - - usable_arenas = usable_arenas->nextarena; - if (usable_arenas != NULL) { - usable_arenas->prevarena = NULL; - assert(usable_arenas->address != 0); - } - } - else { - /* nfreepools > 0: it must be that freepools - * isn't NULL, or that we haven't yet carved - * off all the arena's pools for the first - * time. - */ - assert(usable_arenas->freepools != NULL || - usable_arenas->pool_address <= - (block*)usable_arenas->address + - ARENA_SIZE - POOL_SIZE); - } - init_pool: - /* Frontlink to used pools. */ - next = usedpools[size + size]; /* == prev */ - pool->nextpool = next; - pool->prevpool = next; - next->nextpool = pool; - next->prevpool = pool; - pool->ref.count = 1; - if (pool->szidx == size) { - /* Luckily, this pool last contained blocks - * of the same size class, so its header - * and free list are already initialized. - */ - bp = pool->freeblock; - pool->freeblock = *(block **)bp; - UNLOCK(); - return (void *)bp; - } - /* - * Initialize the pool header, set up the free list to - * contain just the second block, and return the first - * block. - */ - pool->szidx = size; - size = INDEX2SIZE(size); - bp = (block *)pool + POOL_OVERHEAD; - pool->nextoffset = POOL_OVERHEAD + (size << 1); - pool->maxnextoffset = POOL_SIZE - size; - pool->freeblock = bp + size; - *(block **)(pool->freeblock) = NULL; - UNLOCK(); - return (void *)bp; - } - - /* Carve off a new pool. */ - assert(usable_arenas->nfreepools > 0); - assert(usable_arenas->freepools == NULL); - pool = (poolp)usable_arenas->pool_address; - assert((block*)pool <= (block*)usable_arenas->address + - ARENA_SIZE - POOL_SIZE); - pool->arenaindex = usable_arenas - arenas; - assert(&arenas[pool->arenaindex] == usable_arenas); - pool->szidx = DUMMY_SIZE_IDX; - usable_arenas->pool_address += POOL_SIZE; - --usable_arenas->nfreepools; - - if (usable_arenas->nfreepools == 0) { - assert(usable_arenas->nextarena == NULL || - usable_arenas->nextarena->prevarena == - usable_arenas); - /* Unlink the arena: it is completely allocated. */ - usable_arenas = usable_arenas->nextarena; - if (usable_arenas != NULL) { - usable_arenas->prevarena = NULL; - assert(usable_arenas->address != 0); - } - } - - goto init_pool; - } - - /* The small block allocator ends here. */ - -redirect: - /* Redirect the original request to the underlying (libc) allocator. - * We jump here on bigger requests, on error in the code above (as a - * last chance to serve the request) or when the max memory limit - * has been reached. - */ - if (nbytes == 0) - nbytes = 1; - return (void *)malloc(nbytes); -} - -/* free */ - -#undef PyObject_Free -void -PyObject_Free(void *p) -{ - poolp pool; - block *lastfree; - poolp next, prev; - uint size; - - if (p == NULL) /* free(NULL) has no effect */ - return; - - pool = POOL_ADDR(p); - if (Py_ADDRESS_IN_RANGE(p, pool)) { - /* We allocated this address. */ - LOCK(); - /* Link p to the start of the pool's freeblock list. Since - * the pool had at least the p block outstanding, the pool - * wasn't empty (so it's already in a usedpools[] list, or - * was full and is in no list -- it's not in the freeblocks - * list in any case). - */ - assert(pool->ref.count > 0); /* else it was empty */ - *(block **)p = lastfree = pool->freeblock; - pool->freeblock = (block *)p; - if (lastfree) { - struct arena_object* ao; - uint nf; /* ao->nfreepools */ - - /* freeblock wasn't NULL, so the pool wasn't full, - * and the pool is in a usedpools[] list. - */ - if (--pool->ref.count != 0) { - /* pool isn't empty: leave it in usedpools */ - UNLOCK(); - return; - } - /* Pool is now empty: unlink from usedpools, and - * link to the front of freepools. This ensures that - * previously freed pools will be allocated later - * (being not referenced, they are perhaps paged out). - */ - next = pool->nextpool; - prev = pool->prevpool; - next->prevpool = prev; - prev->nextpool = next; - - /* Link the pool to freepools. This is a singly-linked - * list, and pool->prevpool isn't used there. - */ - ao = &arenas[pool->arenaindex]; - pool->nextpool = ao->freepools; - ao->freepools = pool; - nf = ++ao->nfreepools; - - /* All the rest is arena management. We just freed - * a pool, and there are 4 cases for arena mgmt: - * 1. If all the pools are free, return the arena to - * the system free(). - * 2. If this is the only free pool in the arena, - * add the arena back to the `usable_arenas` list. - * 3. If the "next" arena has a smaller count of free - * pools, we have to "slide this arena right" to - * restore that usable_arenas is sorted in order of - * nfreepools. - * 4. Else there's nothing more to do. - */ - if (nf == ao->ntotalpools) { - /* Case 1. First unlink ao from usable_arenas. - */ - assert(ao->prevarena == NULL || - ao->prevarena->address != 0); - assert(ao ->nextarena == NULL || - ao->nextarena->address != 0); - - /* Fix the pointer in the prevarena, or the - * usable_arenas pointer. - */ - if (ao->prevarena == NULL) { - usable_arenas = ao->nextarena; - assert(usable_arenas == NULL || - usable_arenas->address != 0); - } - else { - assert(ao->prevarena->nextarena == ao); - ao->prevarena->nextarena = - ao->nextarena; - } - /* Fix the pointer in the nextarena. */ - if (ao->nextarena != NULL) { - assert(ao->nextarena->prevarena == ao); - ao->nextarena->prevarena = - ao->prevarena; - } - /* Record that this arena_object slot is - * available to be reused. - */ - ao->nextarena = unused_arena_objects; - unused_arena_objects = ao; - - /* Free the entire arena. */ - free((void *)ao->address); - ao->address = 0; /* mark unassociated */ - --narenas_currently_allocated; - - UNLOCK(); - return; - } - if (nf == 1) { - /* Case 2. Put ao at the head of - * usable_arenas. Note that because - * ao->nfreepools was 0 before, ao isn't - * currently on the usable_arenas list. - */ - ao->nextarena = usable_arenas; - ao->prevarena = NULL; - if (usable_arenas) - usable_arenas->prevarena = ao; - usable_arenas = ao; - assert(usable_arenas->address != 0); - - UNLOCK(); - return; - } - /* If this arena is now out of order, we need to keep - * the list sorted. The list is kept sorted so that - * the "most full" arenas are used first, which allows - * the nearly empty arenas to be completely freed. In - * a few un-scientific tests, it seems like this - * approach allowed a lot more memory to be freed. - */ - if (ao->nextarena == NULL || - nf <= ao->nextarena->nfreepools) { - /* Case 4. Nothing to do. */ - UNLOCK(); - return; - } - /* Case 3: We have to move the arena towards the end - * of the list, because it has more free pools than - * the arena to its right. - * First unlink ao from usable_arenas. - */ - if (ao->prevarena != NULL) { - /* ao isn't at the head of the list */ - assert(ao->prevarena->nextarena == ao); - ao->prevarena->nextarena = ao->nextarena; - } - else { - /* ao is at the head of the list */ - assert(usable_arenas == ao); - usable_arenas = ao->nextarena; - } - ao->nextarena->prevarena = ao->prevarena; - - /* Locate the new insertion point by iterating over - * the list, using our nextarena pointer. - */ - while (ao->nextarena != NULL && - nf > ao->nextarena->nfreepools) { - ao->prevarena = ao->nextarena; - ao->nextarena = ao->nextarena->nextarena; - } - - /* Insert ao at this point. */ - assert(ao->nextarena == NULL || - ao->prevarena == ao->nextarena->prevarena); - assert(ao->prevarena->nextarena == ao->nextarena); - - ao->prevarena->nextarena = ao; - if (ao->nextarena != NULL) - ao->nextarena->prevarena = ao; - - /* Verify that the swaps worked. */ - assert(ao->nextarena == NULL || - nf <= ao->nextarena->nfreepools); - assert(ao->prevarena == NULL || - nf > ao->prevarena->nfreepools); - assert(ao->nextarena == NULL || - ao->nextarena->prevarena == ao); - assert((usable_arenas == ao && - ao->prevarena == NULL) || - ao->prevarena->nextarena == ao); - - UNLOCK(); - return; - } - /* Pool was full, so doesn't currently live in any list: - * link it to the front of the appropriate usedpools[] list. - * This mimics LRU pool usage for new allocations and - * targets optimal filling when several pools contain - * blocks of the same size class. - */ - --pool->ref.count; - assert(pool->ref.count > 0); /* else the pool is empty */ - size = pool->szidx; - next = usedpools[size + size]; - prev = next->prevpool; - /* insert pool before next: prev <-> pool <-> next */ - pool->nextpool = next; - pool->prevpool = prev; - next->prevpool = pool; - prev->nextpool = pool; - UNLOCK(); - return; - } - - /* We didn't allocate this address. */ - free(p); -} - -/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0, - * then as the Python docs promise, we do not treat this like free(p), and - * return a non-NULL result. - */ - -#undef PyObject_Realloc -void * -PyObject_Realloc(void *p, size_t nbytes) -{ - void *bp; - poolp pool; - size_t size; - - if (p == NULL) - return PyObject_Malloc(nbytes); - - pool = POOL_ADDR(p); - if (Py_ADDRESS_IN_RANGE(p, pool)) { - /* We're in charge of this block */ - size = INDEX2SIZE(pool->szidx); - if (nbytes <= size) { - /* The block is staying the same or shrinking. If - * it's shrinking, there's a tradeoff: it costs - * cycles to copy the block to a smaller size class, - * but it wastes memory not to copy it. The - * compromise here is to copy on shrink only if at - * least 25% of size can be shaved off. - */ - if (4 * nbytes > 3 * size) { - /* It's the same, - * or shrinking and new/old > 3/4. - */ - return p; - } - size = nbytes; - } - bp = PyObject_Malloc(nbytes); - if (bp != NULL) { - memcpy(bp, p, size); - PyObject_Free(p); - } - return bp; - } - /* We're not managing this block. If nbytes <= - * SMALL_REQUEST_THRESHOLD, it's tempting to try to take over this - * block. However, if we do, we need to copy the valid data from - * the C-managed block to one of our blocks, and there's no portable - * way to know how much of the memory space starting at p is valid. - * As bug 1185883 pointed out the hard way, it's possible that the - * C-managed block is "at the end" of allocated VM space, so that - * a memory fault can occur if we try to copy nbytes bytes starting - * at p. Instead we punt: let C continue to manage this block. - */ - if (nbytes) - return realloc(p, nbytes); - /* C doesn't define the result of realloc(p, 0) (it may or may not - * return NULL then), but Python's docs promise that nbytes==0 never - * returns NULL. We don't pass 0 to realloc(), to avoid that endcase - * to begin with. Even then, we can't be sure that realloc() won't - * return NULL. - */ - bp = realloc(p, 1); - return bp ? bp : p; -} - -#else /* ! WITH_PYMALLOC */ - -/*==========================================================================*/ -/* pymalloc not enabled: Redirect the entry points to malloc. These will - * only be used by extensions that are compiled with pymalloc enabled. */ - -void * -PyObject_Malloc(size_t n) -{ - return PyMem_MALLOC(n); -} - -void * -PyObject_Realloc(void *p, size_t n) -{ - return PyMem_REALLOC(p, n); -} - -void -PyObject_Free(void *p) -{ - PyMem_FREE(p); -} -#endif /* WITH_PYMALLOC */ - -#ifdef PYMALLOC_DEBUG -/*==========================================================================*/ -/* A x-platform debugging allocator. This doesn't manage memory directly, - * it wraps a real allocator, adding extra debugging info to the memory blocks. - */ - -/* Special bytes broadcast into debug memory blocks at appropriate times. - * Strings of these are unlikely to be valid addresses, floats, ints or - * 7-bit ASCII. - */ -#undef CLEANBYTE -#undef DEADBYTE -#undef FORBIDDENBYTE -#define CLEANBYTE 0xCB /* clean (newly allocated) memory */ -#define DEADBYTE 0xDB /* dead (newly freed) memory */ -#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */ - -static size_t serialno = 0; /* incremented on each debug {m,re}alloc */ - -/* serialno is always incremented via calling this routine. The point is - * to supply a single place to set a breakpoint. - */ -static void -bumpserialno(void) -{ - ++serialno; -} - -#define SST SIZEOF_SIZE_T - -/* Read sizeof(size_t) bytes at p as a big-endian size_t. */ -static size_t -read_size_t(const void *p) -{ - const uchar *q = (const uchar *)p; - size_t result = *q++; - int i; - - for (i = SST; --i > 0; ++q) - result = (result << 8) | *q; - return result; -} - -/* Write n as a big-endian size_t, MSB at address p, LSB at - * p + sizeof(size_t) - 1. - */ -static void -write_size_t(void *p, size_t n) -{ - uchar *q = (uchar *)p + SST - 1; - int i; - - for (i = SST; --i >= 0; --q) { - *q = (uchar)(n & 0xff); - n >>= 8; - } -} - -#ifdef Py_DEBUG -/* Is target in the list? The list is traversed via the nextpool pointers. - * The list may be NULL-terminated, or circular. Return 1 if target is in - * list, else 0. - */ -static int -pool_is_in_list(const poolp target, poolp list) -{ - poolp origlist = list; - assert(target != NULL); - if (list == NULL) - return 0; - do { - if (target == list) - return 1; - list = list->nextpool; - } while (list != NULL && list != origlist); - return 0; -} - -#else -#define pool_is_in_list(X, Y) 1 - -#endif /* Py_DEBUG */ - -/* Let S = sizeof(size_t). The debug malloc asks for 4*S extra bytes and - fills them with useful stuff, here calling the underlying malloc's result p: - -p[0: S] - Number of bytes originally asked for. This is a size_t, big-endian (easier - to read in a memory dump). -p[S: 2*S] - Copies of FORBIDDENBYTE. Used to catch under- writes and reads. -p[2*S: 2*S+n] - The requested memory, filled with copies of CLEANBYTE. - Used to catch reference to uninitialized memory. - &p[2*S] is returned. Note that this is 8-byte aligned if pymalloc - handled the request itself. -p[2*S+n: 2*S+n+S] - Copies of FORBIDDENBYTE. Used to catch over- writes and reads. -p[2*S+n+S: 2*S+n+2*S] - A serial number, incremented by 1 on each call to _PyObject_DebugMalloc - and _PyObject_DebugRealloc. - This is a big-endian size_t. - If "bad memory" is detected later, the serial number gives an - excellent way to set a breakpoint on the next run, to capture the - instant at which this block was passed out. -*/ - -void * -_PyObject_DebugMalloc(size_t nbytes) -{ - uchar *p; /* base address of malloc'ed block */ - uchar *tail; /* p + 2*SST + nbytes == pointer to tail pad bytes */ - size_t total; /* nbytes + 4*SST */ - - bumpserialno(); - total = nbytes + 4*SST; - if (total < nbytes) - /* overflow: can't represent total as a size_t */ - return NULL; - - p = (uchar *)PyObject_Malloc(total); - if (p == NULL) - return NULL; - - write_size_t(p, nbytes); - memset(p + SST, FORBIDDENBYTE, SST); - - if (nbytes > 0) - memset(p + 2*SST, CLEANBYTE, nbytes); - - tail = p + 2*SST + nbytes; - memset(tail, FORBIDDENBYTE, SST); - write_size_t(tail + SST, serialno); - - return p + 2*SST; -} - -/* The debug free first checks the 2*SST bytes on each end for sanity (in - particular, that the FORBIDDENBYTEs are still intact). - Then fills the original bytes with DEADBYTE. - Then calls the underlying free. -*/ -void -_PyObject_DebugFree(void *p) -{ - uchar *q = (uchar *)p - 2*SST; /* address returned from malloc */ - size_t nbytes; - - if (p == NULL) - return; - _PyObject_DebugCheckAddress(p); - nbytes = read_size_t(q); - if (nbytes > 0) - memset(q, DEADBYTE, nbytes); - PyObject_Free(q); -} - -void * -_PyObject_DebugRealloc(void *p, size_t nbytes) -{ - uchar *q = (uchar *)p; - uchar *tail; - size_t total; /* nbytes + 4*SST */ - size_t original_nbytes; - int i; - - if (p == NULL) - return _PyObject_DebugMalloc(nbytes); - - _PyObject_DebugCheckAddress(p); - bumpserialno(); - original_nbytes = read_size_t(q - 2*SST); - total = nbytes + 4*SST; - if (total < nbytes) - /* overflow: can't represent total as a size_t */ - return NULL; - - if (nbytes < original_nbytes) { - /* shrinking: mark old extra memory dead */ - memset(q + nbytes, DEADBYTE, original_nbytes - nbytes); - } - - /* Resize and add decorations. */ - q = (uchar *)PyObject_Realloc(q - 2*SST, total); - if (q == NULL) - return NULL; - - write_size_t(q, nbytes); - for (i = 0; i < SST; ++i) - assert(q[SST + i] == FORBIDDENBYTE); - q += 2*SST; - tail = q + nbytes; - memset(tail, FORBIDDENBYTE, SST); - write_size_t(tail + SST, serialno); - - if (nbytes > original_nbytes) { - /* growing: mark new extra memory clean */ - memset(q + original_nbytes, CLEANBYTE, - nbytes - original_nbytes); - } - - return q; -} - -/* Check the forbidden bytes on both ends of the memory allocated for p. - * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress, - * and call Py_FatalError to kill the program. - */ - void -_PyObject_DebugCheckAddress(const void *p) -{ - const uchar *q = (const uchar *)p; - char *msg; - size_t nbytes; - const uchar *tail; - int i; - - if (p == NULL) { - msg = "didn't expect a NULL pointer"; - goto error; - } - - /* Check the stuff at the start of p first: if there's underwrite - * corruption, the number-of-bytes field may be nuts, and checking - * the tail could lead to a segfault then. - */ - for (i = SST; i >= 1; --i) { - if (*(q-i) != FORBIDDENBYTE) { - msg = "bad leading pad byte"; - goto error; - } - } - - nbytes = read_size_t(q - 2*SST); - tail = q + nbytes; - for (i = 0; i < SST; ++i) { - if (tail[i] != FORBIDDENBYTE) { - msg = "bad trailing pad byte"; - goto error; - } - } - - return; - -error: - _PyObject_DebugDumpAddress(p); - Py_FatalError(msg); -} - -/* Display info to stderr about the memory block at p. */ -void -_PyObject_DebugDumpAddress(const void *p) -{ - const uchar *q = (const uchar *)p; - const uchar *tail; - size_t nbytes, serial; - int i; - int ok; - - fprintf(stderr, "Debug memory block at address p=%p:\n", p); - if (p == NULL) - return; - - nbytes = read_size_t(q - 2*SST); - fprintf(stderr, " %" PY_FORMAT_SIZE_T "u bytes originally " - "requested\n", nbytes); - - /* In case this is nuts, check the leading pad bytes first. */ - fprintf(stderr, " The %d pad bytes at p-%d are ", SST, SST); - ok = 1; - for (i = 1; i <= SST; ++i) { - if (*(q-i) != FORBIDDENBYTE) { - ok = 0; - break; - } - } - if (ok) - fputs("FORBIDDENBYTE, as expected.\n", stderr); - else { - fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", - FORBIDDENBYTE); - for (i = SST; i >= 1; --i) { - const uchar byte = *(q-i); - fprintf(stderr, " at p-%d: 0x%02x", i, byte); - if (byte != FORBIDDENBYTE) - fputs(" *** OUCH", stderr); - fputc('\n', stderr); - } - - fputs(" Because memory is corrupted at the start, the " - "count of bytes requested\n" - " may be bogus, and checking the trailing pad " - "bytes may segfault.\n", stderr); - } - - tail = q + nbytes; - fprintf(stderr, " The %d pad bytes at tail=%p are ", SST, tail); - ok = 1; - for (i = 0; i < SST; ++i) { - if (tail[i] != FORBIDDENBYTE) { - ok = 0; - break; - } - } - if (ok) - fputs("FORBIDDENBYTE, as expected.\n", stderr); - else { - fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n", - FORBIDDENBYTE); - for (i = 0; i < SST; ++i) { - const uchar byte = tail[i]; - fprintf(stderr, " at tail+%d: 0x%02x", - i, byte); - if (byte != FORBIDDENBYTE) - fputs(" *** OUCH", stderr); - fputc('\n', stderr); - } - } - - serial = read_size_t(tail + SST); - fprintf(stderr, " The block was made by call #%" PY_FORMAT_SIZE_T - "u to debug malloc/realloc.\n", serial); - - if (nbytes > 0) { - i = 0; - fputs(" Data at p:", stderr); - /* print up to 8 bytes at the start */ - while (q < tail && i < 8) { - fprintf(stderr, " %02x", *q); - ++i; - ++q; - } - /* and up to 8 at the end */ - if (q < tail) { - if (tail - q > 8) { - fputs(" ...", stderr); - q = tail - 8; - } - while (q < tail) { - fprintf(stderr, " %02x", *q); - ++q; - } - } - fputc('\n', stderr); - } -} - -static size_t -printone(const char* msg, size_t value) -{ - int i, k; - char buf[100]; - size_t origvalue = value; - - fputs(msg, stderr); - for (i = (int)strlen(msg); i < 35; ++i) - fputc(' ', stderr); - fputc('=', stderr); - - /* Write the value with commas. */ - i = 22; - buf[i--] = '\0'; - buf[i--] = '\n'; - k = 3; - do { - size_t nextvalue = value / 10; - uint digit = (uint)(value - nextvalue * 10); - value = nextvalue; - buf[i--] = (char)(digit + '0'); - --k; - if (k == 0 && value && i >= 0) { - k = 3; - buf[i--] = ','; - } - } while (value && i >= 0); - - while (i >= 0) - buf[i--] = ' '; - fputs(buf, stderr); - - return origvalue; -} - -/* Print summary info to stderr about the state of pymalloc's structures. - * In Py_DEBUG mode, also perform some expensive internal consistency - * checks. - */ -void -_PyObject_DebugMallocStats(void) -{ - uint i; - const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT; - /* # of pools, allocated blocks, and free blocks per class index */ - size_t numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; - size_t numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; - size_t numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT]; - /* total # of allocated bytes in used and full pools */ - size_t allocated_bytes = 0; - /* total # of available bytes in used pools */ - size_t available_bytes = 0; - /* # of free pools + pools not yet carved out of current arena */ - uint numfreepools = 0; - /* # of bytes for arena alignment padding */ - size_t arena_alignment = 0; - /* # of bytes in used and full pools used for pool_headers */ - size_t pool_header_bytes = 0; - /* # of bytes in used and full pools wasted due to quantization, - * i.e. the necessarily leftover space at the ends of used and - * full pools. - */ - size_t quantization = 0; - /* # of arenas actually allocated. */ - size_t narenas = 0; - /* running total -- should equal narenas * ARENA_SIZE */ - size_t total; - char buf[128]; - - fprintf(stderr, "Small block threshold = %d, in %u size classes.\n", - SMALL_REQUEST_THRESHOLD, numclasses); - - for (i = 0; i < numclasses; ++i) - numpools[i] = numblocks[i] = numfreeblocks[i] = 0; - - /* Because full pools aren't linked to from anything, it's easiest - * to march over all the arenas. If we're lucky, most of the memory - * will be living in full pools -- would be a shame to miss them. - */ - for (i = 0; i < maxarenas; ++i) { - uint poolsinarena; - uint j; - uptr base = arenas[i].address; - - /* Skip arenas which are not allocated. */ - if (arenas[i].address == (uptr)NULL) - continue; - narenas += 1; - - poolsinarena = arenas[i].ntotalpools; - numfreepools += arenas[i].nfreepools; - - /* round up to pool alignment */ - if (base & (uptr)POOL_SIZE_MASK) { - arena_alignment += POOL_SIZE; - base &= ~(uptr)POOL_SIZE_MASK; - base += POOL_SIZE; - } - - /* visit every pool in the arena */ - assert(base <= (uptr) arenas[i].pool_address); - for (j = 0; - base < (uptr) arenas[i].pool_address; - ++j, base += POOL_SIZE) { - poolp p = (poolp)base; - const uint sz = p->szidx; - uint freeblocks; - - if (p->ref.count == 0) { - /* currently unused */ - assert(pool_is_in_list(p, arenas[i].freepools)); - continue; - } - ++numpools[sz]; - numblocks[sz] += p->ref.count; - freeblocks = NUMBLOCKS(sz) - p->ref.count; - numfreeblocks[sz] += freeblocks; -#ifdef Py_DEBUG - if (freeblocks > 0) - assert(pool_is_in_list(p, usedpools[sz + sz])); -#endif - } - } - assert(narenas == narenas_currently_allocated); - - fputc('\n', stderr); - fputs("class size num pools blocks in use avail blocks\n" - "----- ---- --------- ------------- ------------\n", - stderr); - - for (i = 0; i < numclasses; ++i) { - size_t p = numpools[i]; - size_t b = numblocks[i]; - size_t f = numfreeblocks[i]; - uint size = INDEX2SIZE(i); - if (p == 0) { - assert(b == 0 && f == 0); - continue; - } - fprintf(stderr, "%5u %6u " - "%11" PY_FORMAT_SIZE_T "u " - "%15" PY_FORMAT_SIZE_T "u " - "%13" PY_FORMAT_SIZE_T "u\n", - i, size, p, b, f); - allocated_bytes += b * size; - available_bytes += f * size; - pool_header_bytes += p * POOL_OVERHEAD; - quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size); - } - fputc('\n', stderr); - (void)printone("# times object malloc called", serialno); - - (void)printone("# arenas allocated total", ntimes_arena_allocated); - (void)printone("# arenas reclaimed", ntimes_arena_allocated - narenas); - (void)printone("# arenas highwater mark", narenas_highwater); - (void)printone("# arenas allocated current", narenas); - - PyOS_snprintf(buf, sizeof(buf), - "%" PY_FORMAT_SIZE_T "u arenas * %d bytes/arena", - narenas, ARENA_SIZE); - (void)printone(buf, narenas * ARENA_SIZE); - - fputc('\n', stderr); - - total = printone("# bytes in allocated blocks", allocated_bytes); - total += printone("# bytes in available blocks", available_bytes); - - PyOS_snprintf(buf, sizeof(buf), - "%u unused pools * %d bytes", numfreepools, POOL_SIZE); - total += printone(buf, (size_t)numfreepools * POOL_SIZE); - - total += printone("# bytes lost to pool headers", pool_header_bytes); - total += printone("# bytes lost to quantization", quantization); - total += printone("# bytes lost to arena alignment", arena_alignment); - (void)printone("Total", total); -} - -#endif /* PYMALLOC_DEBUG */ - -#ifdef Py_USING_MEMORY_DEBUGGER -/* Make this function last so gcc won't inline it since the definition is - * after the reference. - */ -int -Py_ADDRESS_IN_RANGE(void *P, poolp pool) -{ - return pool->arenaindex < maxarenas && - (uptr)P - arenas[pool->arenaindex].address < (uptr)ARENA_SIZE && - arenas[pool->arenaindex].address != 0; -} -#endif |