diff options
author | rodri <rgl@antares-labs.eu> | 2023-01-29 23:11:05 +0000 |
---|---|---|
committer | rodri <rgl@antares-labs.eu> | 2023-01-29 23:11:05 +0000 |
commit | a5c6374b77610cb2bcb794551475e092d990ef8b (patch) | |
tree | 9fc77cf42281a02fbc545afead9be30206b2bd32 /sys/src/libgeometry/tstack.c | |
parent | 08a080e8c2c775eda149d3e830bd4fad2c35f249 (diff) |
libgeometry revamp
Diffstat (limited to 'sys/src/libgeometry/tstack.c')
-rw-r--r-- | sys/src/libgeometry/tstack.c | 169 |
1 files changed, 0 insertions, 169 deletions
diff --git a/sys/src/libgeometry/tstack.c b/sys/src/libgeometry/tstack.c deleted file mode 100644 index 6867cd4d4..000000000 --- a/sys/src/libgeometry/tstack.c +++ /dev/null @@ -1,169 +0,0 @@ -/*% cc -gpc % - * These transformation routines maintain stacks of transformations - * and their inverses. - * t=pushmat(t) push matrix stack - * t=popmat(t) pop matrix stack - * rot(t, a, axis) multiply stack top by rotation - * qrot(t, q) multiply stack top by rotation, q is unit quaternion - * scale(t, x, y, z) multiply stack top by scale - * move(t, x, y, z) multiply stack top by translation - * xform(t, m) multiply stack top by m - * ixform(t, m, inv) multiply stack top by m. inv is the inverse of m. - * look(t, e, l, u) multiply stack top by viewing transformation - * persp(t, fov, n, f) multiply stack top by perspective transformation - * viewport(t, r, aspect) - * multiply stack top by window->viewport transformation. - */ -#include <u.h> -#include <libc.h> -#include <draw.h> -#include <geometry.h> -Space *pushmat(Space *t){ - Space *v; - v=malloc(sizeof(Space)); - if(t==0){ - ident(v->t); - ident(v->tinv); - } - else - *v=*t; - v->next=t; - return v; -} -Space *popmat(Space *t){ - Space *v; - if(t==0) return 0; - v=t->next; - free(t); - return v; -} -void rot(Space *t, double theta, int axis){ - double s=sin(radians(theta)), c=cos(radians(theta)); - Matrix m, inv; - register i=(axis+1)%3, j=(axis+2)%3; - ident(m); - m[i][i] = c; - m[i][j] = -s; - m[j][i] = s; - m[j][j] = c; - ident(inv); - inv[i][i] = c; - inv[i][j] = s; - inv[j][i] = -s; - inv[j][j] = c; - ixform(t, m, inv); -} -void qrot(Space *t, Quaternion q){ - Matrix m, inv; - int i, j; - qtom(m, q); - for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i]; - ixform(t, m, inv); -} -void scale(Space *t, double x, double y, double z){ - Matrix m, inv; - ident(m); - m[0][0]=x; - m[1][1]=y; - m[2][2]=z; - ident(inv); - inv[0][0]=1/x; - inv[1][1]=1/y; - inv[2][2]=1/z; - ixform(t, m, inv); -} -void move(Space *t, double x, double y, double z){ - Matrix m, inv; - ident(m); - m[0][3]=x; - m[1][3]=y; - m[2][3]=z; - ident(inv); - inv[0][3]=-x; - inv[1][3]=-y; - inv[2][3]=-z; - ixform(t, m, inv); -} -void xform(Space *t, Matrix m){ - Matrix inv; - if(invertmat(m, inv)==0) return; - ixform(t, m, inv); -} -void ixform(Space *t, Matrix m, Matrix inv){ - matmul(t->t, m); - matmulr(t->tinv, inv); -} -/* - * multiply the top of the matrix stack by a view-pointing transformation - * with the eyepoint at e, looking at point l, with u at the top of the screen. - * The coordinate system is deemed to be right-handed. - * The generated transformation transforms this view into a view from - * the origin, looking in the positive y direction, with the z axis pointing up, - * and x to the right. - */ -void look(Space *t, Point3 e, Point3 l, Point3 u){ - Matrix m, inv; - Point3 r; - l=unit3(sub3(l, e)); - u=unit3(vrem3(sub3(u, e), l)); - r=cross3(l, u); - /* make the matrix to transform from (rlu) space to (xyz) space */ - ident(m); - m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z; - m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z; - m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z; - ident(inv); - inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x; - inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y; - inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z; - ixform(t, m, inv); - move(t, -e.x, -e.y, -e.z); -} -/* - * generate a transformation that maps the frustum with apex at the origin, - * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. - * plane y=n maps to y'=-1, y=f maps to y'=1 - */ -int persp(Space *t, double fov, double n, double f){ - Matrix m; - double z; - if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */ - return -1; - z=1/tan(radians(fov)/2); - m[0][0]=z; m[0][1]=0; m[0][2]=0; m[0][3]=0; - m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]); - m[2][0]=0; m[2][1]=0; m[2][2]=z; m[2][3]=0; - m[3][0]=0; m[3][1]=1; m[3][2]=0; m[3][3]=0; - xform(t, m); - return 0; -} -/* - * Map the unit-cube window into the given screen viewport. - * r has min at the top left, max just outside the lower right. Aspect is the - * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) - * The whole window is transformed to fit centered inside the viewport with equal - * slop on either top and bottom or left and right, depending on the viewport's - * aspect ratio. - * The window is viewed down the y axis, with x to the left and z up. The viewport - * has x increasing to the right and y increasing down. The window's y coordinates - * are mapped, unchanged, into the viewport's z coordinates. - */ -void viewport(Space *t, Rectangle r, double aspect){ - Matrix m; - double xc, yc, wid, hgt, scale; - xc=.5*(r.min.x+r.max.x); - yc=.5*(r.min.y+r.max.y); - wid=(r.max.x-r.min.x)*aspect; - hgt=r.max.y-r.min.y; - scale=.5*(wid<hgt?wid:hgt); - ident(m); - m[0][0]=scale; - m[0][3]=xc; - m[1][1]=0; - m[1][2]=-scale; - m[1][3]=yc; - m[2][1]=1; - m[2][2]=0; - /* should get inverse by hand */ - xform(t, m); -} |