1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
|
/*
* MP3 bitstream Output interface for LAME
*
* Copyright (c) 1999 Takehiro TOMINAGA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include "tables.h"
#include "bitstream.h"
#include "quantize.h"
#include "quantize_pvt.h"
#include "version.h"
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif
/* This is the scfsi_band table from 2.4.2.7 of the IS */
const int scfsi_band[5] = { 0, 6, 11, 16, 21 };
/* unsigned int is at least this large: */
/* we work with ints, so when doing bit manipulation, we limit
* ourselves to MAX_LENGTH-2 just to be on the safe side */
#define MAX_LENGTH 32
#ifdef DEBUG
static int hoge, hogege;
#endif
void putheader_bits(lame_internal_flags *gfc,int w_ptr)
{
Bit_stream_struc *bs;
bs = &gfc->bs;
#ifdef DEBUG
hoge += gfc->sideinfo_len * 8;
hogege += gfc->sideinfo_len * 8;
#endif
memcpy(&bs->buf[bs->buf_byte_idx], gfc->header[gfc->w_ptr].buf,
gfc->sideinfo_len);
bs->buf_byte_idx += gfc->sideinfo_len;
bs->totbit += gfc->sideinfo_len * 8;
gfc->w_ptr = (gfc->w_ptr + 1) & (MAX_HEADER_BUF - 1);
}
/*write j bits into the bit stream */
static void
putbits2(lame_global_flags *gfp, int val, int j)
{
lame_internal_flags *gfc=gfp->internal_flags;
Bit_stream_struc *bs;
bs = &gfc->bs;
// assert(j < MAX_LENGTH-2);
while (j > 0) {
int k;
if (bs->buf_bit_idx == 0) {
bs->buf_bit_idx = 8;
bs->buf_byte_idx++;
// assert(bs->buf_byte_idx < BUFFER_SIZE);
// assert(gfc->header[gfc->w_ptr].write_timing >= bs->totbit);
if (gfc->header[gfc->w_ptr].write_timing == bs->totbit)
putheader_bits(gfc, gfc->w_ptr);
bs->buf[bs->buf_byte_idx] = 0;
}
k = Min(j, bs->buf_bit_idx);
j -= k;
bs->buf_bit_idx -= k;
// assert (j < MAX_LENGTH); /* 32 too large on 32 bit machines */
// assert (bs->buf_bit_idx < MAX_LENGTH);
bs->buf[bs->buf_byte_idx] |= (val >> j) << bs->buf_bit_idx;
bs->totbit += k;
}
}
/*write j bits into the bit stream, ignoring frame headers */
static void
putbits_noheaders(lame_global_flags *gfp, int val, int j)
{
lame_internal_flags *gfc=gfp->internal_flags;
Bit_stream_struc *bs;
bs = &gfc->bs;
// assert(j < MAX_LENGTH-2);
while (j > 0) {
int k;
if (bs->buf_bit_idx == 0) {
bs->buf_bit_idx = 8;
bs->buf_byte_idx++;
// assert(bs->buf_byte_idx < BUFFER_SIZE);
bs->buf[bs->buf_byte_idx] = 0;
}
k = Min(j, bs->buf_bit_idx);
j -= k;
bs->buf_bit_idx -= k;
// assert (j < MAX_LENGTH); /* 32 too large on 32 bit machines */
// assert (bs->buf_bit_idx < MAX_LENGTH);
bs->buf[bs->buf_byte_idx] |= (val >> j) << bs->buf_bit_idx;
bs->totbit += k;
}
}
/*
Some combinations of bitrate, Fs, and stereo make it impossible to stuff
out a frame using just main_data, due to the limited number of bits to
indicate main_data_length. In these situations, we put stuffing bits into
the ancillary data...
*/
static void
drain_into_ancillary(lame_global_flags *gfp,int remainingBits)
{
lame_internal_flags *gfc=gfp->internal_flags;
int i;
assert(remainingBits >= 0);
if (remainingBits >= 8) {
putbits2(gfp,0x4c,8);
remainingBits -= 8;
}
if (remainingBits >= 8) {
putbits2(gfp,0x41,8);
remainingBits -= 8;
}
if (remainingBits >= 8) {
putbits2(gfp,0x4d,8);
remainingBits -= 8;
}
if (remainingBits >= 8) {
putbits2(gfp,0x45,8);
remainingBits -= 8;
}
if (remainingBits >= 32) {
const char *version = get_lame_short_version ();
if (remainingBits >= 32)
for (i=0; i<(int)strlen(version) && remainingBits >=8 ; ++i) {
remainingBits -= 8;
putbits2(gfp,version[i],8);
}
}
for (; remainingBits >= 1; remainingBits -= 1 ) {
putbits2 ( gfp, gfc->ancillary_flag, 1 );
gfc->ancillary_flag ^= 1;
}
assert (remainingBits == 0);
}
/*write N bits into the header */
inline static void
writeheader(lame_internal_flags *gfc,int val, int j)
{
int ptr = gfc->header[gfc->h_ptr].ptr;
while (j > 0) {
int k = Min(j, 8 - (ptr & 7));
j -= k;
assert (j < MAX_LENGTH); /* >> 32 too large for 32 bit machines */
gfc->header[gfc->h_ptr].buf[ptr >> 3]
|= ((val >> j)) << (8 - (ptr & 7) - k);
ptr += k;
}
gfc->header[gfc->h_ptr].ptr = ptr;
}
/* (jo) this wrapper function for BF_addEntry() updates also the crc */
static void
CRC_writeheader(lame_internal_flags *gfc, int value, int length,int *crc)
{
int bit = 1 << length;
assert(length < MAX_LENGTH-2);
while((bit >>= 1)){
*crc <<= 1;
if (!(*crc & 0x10000) ^ !(value & bit))
*crc ^= CRC16_POLYNOMIAL;
}
*crc &= 0xffff;
writeheader(gfc,value, length);
}
void main_CRC_init (void) {}
inline static void
encodeSideInfo2(lame_global_flags *gfp,int bitsPerFrame)
{
lame_internal_flags *gfc=gfp->internal_flags;
III_side_info_t *l3_side;
int gr, ch;
int crc;
l3_side = &gfc->l3_side;
gfc->header[gfc->h_ptr].ptr = 0;
memset(gfc->header[gfc->h_ptr].buf, 0, gfc->sideinfo_len);
crc = 0xffff; /* (jo) init crc16 for error_protection */
if (gfp->out_samplerate < 16000)
writeheader(gfc,0xffe, 12);
else
writeheader(gfc,0xfff, 12);
writeheader(gfc,(gfp->version), 1);
writeheader(gfc,4 - 3, 2);
writeheader(gfc,(!gfp->error_protection), 1);
/* (jo) from now on call the CRC_writeheader() wrapper to update crc */
CRC_writeheader(gfc,(gfc->bitrate_index), 4,&crc);
CRC_writeheader(gfc,(gfc->samplerate_index), 2,&crc);
CRC_writeheader(gfc,(gfc->padding), 1,&crc);
CRC_writeheader(gfc,(gfp->extension), 1,&crc);
CRC_writeheader(gfc,(gfp->mode), 2,&crc);
CRC_writeheader(gfc,(gfc->mode_ext), 2,&crc);
CRC_writeheader(gfc,(gfp->copyright), 1,&crc);
CRC_writeheader(gfc,(gfp->original), 1,&crc);
CRC_writeheader(gfc,(gfp->emphasis), 2,&crc);
if (gfp->error_protection) {
writeheader(gfc,0, 16); /* dummy */
}
if (gfp->version == 1) {
/* MPEG1 */
assert(l3_side->main_data_begin >= 0);
CRC_writeheader(gfc,(l3_side->main_data_begin), 9,&crc);
if (gfc->channels_out == 2)
CRC_writeheader(gfc,l3_side->private_bits, 3,&crc);
else
CRC_writeheader(gfc,l3_side->private_bits, 5,&crc);
for (ch = 0; ch < gfc->channels_out; ch++) {
int band;
for (band = 0; band < 4; band++) {
CRC_writeheader(gfc,l3_side->scfsi[ch][band], 1,&crc);
}
}
for (gr = 0; gr < 2; gr++) {
for (ch = 0; ch < gfc->channels_out; ch++) {
gr_info *gi = &l3_side->gr[gr].ch[ch].tt;
CRC_writeheader(gfc,gi->part2_3_length, 12,&crc);
CRC_writeheader(gfc,gi->big_values / 2, 9,&crc);
CRC_writeheader(gfc,gi->global_gain, 8,&crc);
CRC_writeheader(gfc,gi->scalefac_compress, 4,&crc);
CRC_writeheader(gfc,gi->window_switching_flag, 1,&crc);
if (gi->window_switching_flag) {
CRC_writeheader(gfc,gi->block_type, 2,&crc);
CRC_writeheader(gfc,gi->mixed_block_flag, 1,&crc);
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
CRC_writeheader(gfc,gi->table_select[0], 5,&crc);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
CRC_writeheader(gfc,gi->table_select[1], 5,&crc);
CRC_writeheader(gfc,gi->subblock_gain[0], 3,&crc);
CRC_writeheader(gfc,gi->subblock_gain[1], 3,&crc);
CRC_writeheader(gfc,gi->subblock_gain[2], 3,&crc);
} else {
assert(gi->block_type == NORM_TYPE);
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
CRC_writeheader(gfc,gi->table_select[0], 5,&crc);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
CRC_writeheader(gfc,gi->table_select[1], 5,&crc);
if (gi->table_select[2] == 14)
gi->table_select[2] = 16;
CRC_writeheader(gfc,gi->table_select[2], 5,&crc);
assert(gi->region0_count < 16U);
assert(gi->region1_count < 8U);
CRC_writeheader(gfc,gi->region0_count, 4,&crc);
CRC_writeheader(gfc,gi->region1_count, 3,&crc);
}
CRC_writeheader(gfc,gi->preflag, 1,&crc);
CRC_writeheader(gfc,gi->scalefac_scale, 1,&crc);
CRC_writeheader(gfc,gi->count1table_select, 1,&crc);
}
}
} else {
/* MPEG2 */
assert(l3_side->main_data_begin >= 0);
CRC_writeheader(gfc,(l3_side->main_data_begin), 8,&crc);
CRC_writeheader(gfc,l3_side->private_bits, gfc->channels_out,&crc);
gr = 0;
for (ch = 0; ch < gfc->channels_out; ch++) {
gr_info *gi = &l3_side->gr[gr].ch[ch].tt;
CRC_writeheader(gfc,gi->part2_3_length, 12,&crc);
CRC_writeheader(gfc,gi->big_values / 2, 9,&crc);
CRC_writeheader(gfc,gi->global_gain, 8,&crc);
CRC_writeheader(gfc,gi->scalefac_compress, 9,&crc);
CRC_writeheader(gfc,gi->window_switching_flag, 1,&crc);
if (gi->window_switching_flag) {
CRC_writeheader(gfc,gi->block_type, 2,&crc);
CRC_writeheader(gfc,gi->mixed_block_flag, 1,&crc);
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
CRC_writeheader(gfc,gi->table_select[0], 5,&crc);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
CRC_writeheader(gfc,gi->table_select[1], 5,&crc);
CRC_writeheader(gfc,gi->subblock_gain[0], 3,&crc);
CRC_writeheader(gfc,gi->subblock_gain[1], 3,&crc);
CRC_writeheader(gfc,gi->subblock_gain[2], 3,&crc);
} else {
if (gi->table_select[0] == 14)
gi->table_select[0] = 16;
CRC_writeheader(gfc,gi->table_select[0], 5,&crc);
if (gi->table_select[1] == 14)
gi->table_select[1] = 16;
CRC_writeheader(gfc,gi->table_select[1], 5,&crc);
if (gi->table_select[2] == 14)
gi->table_select[2] = 16;
CRC_writeheader(gfc,gi->table_select[2], 5,&crc);
assert(gi->region0_count < 16U);
assert(gi->region1_count < 8U);
CRC_writeheader(gfc,gi->region0_count, 4,&crc);
CRC_writeheader(gfc,gi->region1_count, 3,&crc);
}
CRC_writeheader(gfc,gi->scalefac_scale, 1,&crc);
CRC_writeheader(gfc,gi->count1table_select, 1,&crc);
}
}
if (gfp->error_protection) {
/* (jo) error_protection: add crc16 information to header */
gfc->header[gfc->h_ptr].buf[4] = crc >> 8;
gfc->header[gfc->h_ptr].buf[5] = crc & 255;
}
{
int old = gfc->h_ptr;
assert(gfc->header[old].ptr == gfc->sideinfo_len * 8);
gfc->h_ptr = (old + 1) & (MAX_HEADER_BUF - 1);
gfc->header[gfc->h_ptr].write_timing =
gfc->header[old].write_timing + bitsPerFrame;
if (gfc->h_ptr == gfc->w_ptr) {
/* yikes! we are out of header buffer space */
ERRORF(gfc,"Error: MAX_HEADER_BUF too small in bitstream.c \n");
}
}
}
inline static int
huffman_coder_count1(lame_global_flags *gfp,int *ix, gr_info *gi)
{
#ifdef DEBUG
lame_internal_flags *gfc = gfp->internal_flags;
#endif
/* Write count1 area */
const struct huffcodetab *h = &ht[gi->count1table_select + 32];
int i,bits=0;
#ifdef DEBUG
int gegebo = gfc->bs.totbit;
#endif
ix += gi->big_values;
assert(gi->count1table_select < 2);
for (i = (gi->count1 - gi->big_values) / 4; i > 0; --i) {
int huffbits = 0;
int p = 0, v;
v = ix[0];
if (v) {
p += 8;
if (v < 0)
huffbits++;
assert(-1 <= v && v <= 1);
}
v = ix[1];
if (v) {
p += 4;
huffbits *= 2;
if (v < 0)
huffbits++;
assert(-1 <= v && v <= 1);
}
v = ix[2];
if (v) {
p += 2;
huffbits *= 2;
if (v < 0)
huffbits++;
assert(-1 <= v && v <= 1);
}
v = ix[3];
if (v) {
p++;
huffbits *= 2;
if (v < 0)
huffbits++;
assert(-1 <= v && v <= 1);
}
ix += 4;
putbits2(gfp,huffbits + h->table[p], h->hlen[p]);
bits += h->hlen[p];
}
#ifdef DEBUG
DEBUGF("%ld %d %d %d\n",gfc->bs.totbit -gegebo, gi->count1bits, gi->big_values, gi->count1);
#endif
return bits;
}
/*
* Implements the pseudocode of page 98 of the IS
*/
static int
HuffmanCode(lame_global_flags* const gfp, int table_select, int x1, int x2)
{
struct huffcodetab* h = ht + table_select;
int code = 0;
int cbits = 0;
int xbits = 0;
int sgn_x1 = 0;
int sgn_x2 = 0;
int linbits = h->xlen;
int xlen = h->xlen;
int ext;
// assert ( table_select > 0 );
if (x1 < 0) {
sgn_x1++;
x1 = -x1;
}
if (x2 < 0) {
sgn_x2++;
x2 = -x2;
}
ext = sgn_x1;
if (table_select > 15) {
/* use ESC-words */
if (x1 > 14) {
int linbits_x1 = x1 - 15;
// assert ( linbits_x1 <= h->linmax );
ext |= linbits_x1 << 1;
xbits = linbits;
x1 = 15;
}
if (x2 > 14) {
int linbits_x2 = x2 - 15;
// assert ( linbits_x2 <= h->linmax );
ext <<= linbits;
ext |= linbits_x2;
xbits += linbits;
x2 = 15;
}
xlen = 16;
}
if (x1 != 0) {
cbits--;
}
if (x2 != 0) {
ext <<= 1;
ext |= sgn_x2;
cbits--;
}
xbits -= cbits;
// assert ( (x1|x2) < 16u );
x1 = x1 * xlen + x2;
code = h->table [x1];
cbits += h->hlen [x1];
// assert ( cbits <= MAX_LENGTH );
// assert ( xbits <= MAX_LENGTH );
putbits2 ( gfp, code, cbits );
putbits2 ( gfp, ext, xbits );
return cbits + xbits;
}
static int
Huffmancodebits(lame_global_flags *gfp, int tableindex, int start, int end, int *ix)
{
int i,bits;
// assert(tableindex < 32);
if (!tableindex) return 0;
bits=0;
for (i = start; i < end; i += 2) {
bits += HuffmanCode(gfp,tableindex, ix[i], ix[i + 1]);
}
return bits;
}
/*
Note the discussion of huffmancodebits() on pages 28
and 29 of the IS, as well as the definitions of the side
information on pages 26 and 27.
*/
static int
ShortHuffmancodebits(lame_global_flags *gfp,int *ix, gr_info *gi)
{
lame_internal_flags *gfc=gfp->internal_flags;
int bits;
int region1Start;
region1Start = 3*gfc->scalefac_band.s[3];
if (region1Start > gi->big_values)
region1Start = gi->big_values;
/* short blocks do not have a region2 */
bits = Huffmancodebits(gfp,gi->table_select[0], 0, region1Start, ix);
bits += Huffmancodebits(gfp,gi->table_select[1], region1Start, gi->big_values, ix);
return bits;
}
static int
LongHuffmancodebits(lame_global_flags *gfp,int *ix, gr_info *gi)
{
lame_internal_flags *gfc=gfp->internal_flags;
int i, bigvalues,bits=0;
int region1Start, region2Start;
bigvalues = gi->big_values;
assert(0 <= bigvalues && bigvalues <= 576);
i = gi->region0_count + 1;
assert(i < 23);
region1Start = gfc->scalefac_band.l[i];
i += gi->region1_count + 1;
assert(i < 23);
region2Start = gfc->scalefac_band.l[i];
if (region1Start > bigvalues)
region1Start = bigvalues;
if (region2Start > bigvalues)
region2Start = bigvalues;
bits +=Huffmancodebits(gfp,gi->table_select[0], 0, region1Start, ix);
bits +=Huffmancodebits(gfp,gi->table_select[1], region1Start, region2Start, ix);
bits +=Huffmancodebits(gfp,gi->table_select[2], region2Start, bigvalues, ix);
return bits;
}
inline static int
writeMainData ( lame_global_flags * const gfp,
int l3_enc [2] [2] [576],
III_scalefac_t scalefac [2] [2] )
{
int gr, ch, sfb,data_bits,scale_bits,tot_bits=0;
lame_internal_flags *gfc=gfp->internal_flags;
III_side_info_t *l3_side;
l3_side = &gfc->l3_side;
if (gfp->version == 1) {
/* MPEG 1 */
for (gr = 0; gr < 2; gr++) {
for (ch = 0; ch < gfc->channels_out; ch++) {
gr_info *gi = &l3_side->gr[gr].ch[ch].tt;
int slen1 = slen1_tab[gi->scalefac_compress];
int slen2 = slen2_tab[gi->scalefac_compress];
data_bits=0;
scale_bits=0;
#ifdef DEBUG
hogege = gfc->bs.totbit;
#endif
if (gi->block_type == SHORT_TYPE) {
for (sfb = 0; sfb < SBPSY_s; sfb++) {
int slen = sfb < 6 ? slen1 : slen2;
assert(scalefac[gr][ch].s[sfb][0]>=0);
assert(scalefac[gr][ch].s[sfb][1]>=0);
assert(scalefac[gr][ch].s[sfb][2]>=0);
putbits2(gfp,scalefac[gr][ch].s[sfb][0], slen);
putbits2(gfp,scalefac[gr][ch].s[sfb][1], slen);
putbits2(gfp,scalefac[gr][ch].s[sfb][2], slen);
scale_bits += 3*slen;
}
data_bits += ShortHuffmancodebits(gfp,l3_enc[gr][ch], gi);
} else {
int i;
for (i = 0; i < sizeof(scfsi_band) / sizeof(int) - 1;
i++) {
if (gr != 0 && l3_side->scfsi[ch][i])
continue;
for (sfb = scfsi_band[i]; sfb < scfsi_band[i + 1];
sfb++) {
assert(scalefac[gr][ch].l[sfb]>=0);
putbits2(gfp,scalefac[gr][ch].l[sfb],
sfb < 11 ? slen1 : slen2);
scale_bits += sfb < 11 ? slen1 : slen2;
}
}
data_bits +=LongHuffmancodebits(gfp,l3_enc[gr][ch], gi);
}
data_bits +=huffman_coder_count1(gfp,l3_enc[gr][ch], gi);
#ifdef DEBUG
DEBUGF("<%ld> ", gfc->bs.totbit-hogege);
#endif
/* does bitcount in quantize.c agree with actual bit count?*/
assert(data_bits==gi->part2_3_length-gi->part2_length);
assert(scale_bits==gi->part2_length);
tot_bits += scale_bits + data_bits;
} /* for ch */
} /* for gr */
} else {
/* MPEG 2 */
gr = 0;
for (ch = 0; ch < gfc->channels_out; ch++) {
gr_info *gi = &l3_side->gr[gr].ch[ch].tt;
int i, sfb_partition;
assert(gi->sfb_partition_table);
data_bits = 0;
scale_bits=0;
sfb = 0;
sfb_partition = 0;
if (gi->block_type == SHORT_TYPE) {
for (; sfb_partition < 4; sfb_partition++) {
int sfbs = gi->sfb_partition_table[sfb_partition] / 3;
int slen = gi->slen[sfb_partition];
for (i = 0; i < sfbs; i++, sfb++) {
putbits2(gfp,Max(scalefac[gr][ch].s[sfb][0], 0U), slen);
putbits2(gfp,Max(scalefac[gr][ch].s[sfb][1], 0U), slen);
putbits2(gfp,Max(scalefac[gr][ch].s[sfb][2], 0U), slen);
scale_bits += 3*slen;
}
}
data_bits += ShortHuffmancodebits(gfp,l3_enc[gr][ch], gi);
} else {
for (; sfb_partition < 4; sfb_partition++) {
int sfbs = gi->sfb_partition_table[sfb_partition];
int slen = gi->slen[sfb_partition];
for (i = 0; i < sfbs; i++, sfb++) {
putbits2(gfp,Max(scalefac[gr][ch].l[sfb], 0U), slen);
scale_bits += slen;
}
}
data_bits +=LongHuffmancodebits(gfp,l3_enc[gr][ch], gi);
}
data_bits +=huffman_coder_count1(gfp,l3_enc[gr][ch], gi);
/* does bitcount in quantize.c agree with actual bit count?*/
assert(data_bits==gi->part2_3_length-gi->part2_length);
assert(scale_bits==gi->part2_length);
tot_bits += scale_bits + data_bits;
} /* for ch */
} /* for gf */
return tot_bits;
} /* main_data */
void
flush_bitstream(lame_global_flags *gfp)
{
lame_internal_flags *gfc=gfp->internal_flags;
int flushbits,remaining_headers;
int bitsPerFrame, mean_bits;
int last_ptr,first_ptr;
first_ptr=gfc->w_ptr; /* first header to add to bitstream */
last_ptr = gfc->h_ptr - 1; /* last header to add to bitstream */
if (last_ptr==-1) last_ptr=MAX_HEADER_BUF-1;
/* add this many bits to bitstream so we can flush all headers */
flushbits = gfc->header[last_ptr].write_timing - gfc->bs.totbit;
if (flushbits >= 0) {
/* if flushbits >= 0, some headers have not yet been written */
/* reduce flushbits by the size of the headers */
remaining_headers= 1+last_ptr - first_ptr;
if (last_ptr < first_ptr)
remaining_headers= 1+last_ptr - first_ptr + MAX_HEADER_BUF;
flushbits -= remaining_headers*8*gfc->sideinfo_len;
}
/* finally, add some bits so that the last frame is complete
* these bits are not necessary to decode the last frame, but
* some decoders will ignore last frame if these bits are missing
*/
getframebits(gfp,&bitsPerFrame,&mean_bits);
flushbits += bitsPerFrame;
if (flushbits<0) {
#if 0
/* if flushbits < 0, this would mean that the buffer looks like:
* (data...) last_header (data...) (extra data that should not be here...)
*/
DEBUGF("last header write_timing = %i \n",gfc->header[last_ptr].write_timing);
DEBUGF("first header write_timing = %i \n",gfc->header[first_ptr].write_timing);
DEBUGF("bs.totbit: %i \n",gfc->bs.totbit);
DEBUGF("first_ptr, last_ptr %i %i \n",first_ptr,last_ptr);
DEBUGF("remaining_headers = %i \n",remaining_headers);
DEBUGF("bitsperframe: %i \n",bitsPerFrame);
DEBUGF("sidelen: %i \n",gfc->sideinfo_len);
#endif
ERRORF(gfc,"strange error flushing buffer ... \n");
} else {
drain_into_ancillary(gfp,flushbits);
}
assert (gfc->header[last_ptr].write_timing + bitsPerFrame == gfc->bs.totbit);
}
void add_dummy_byte ( lame_global_flags* const gfp, unsigned char val )
{
lame_internal_flags *gfc = gfp->internal_flags;
int i;
putbits_noheaders(gfp,val,8);
for (i=0 ; i< MAX_HEADER_BUF ; ++i)
gfc->header[i].write_timing += 8;
}
/*
format_bitstream()
This is called after a frame of audio has been quantized and coded.
It will write the encoded audio to the bitstream. Note that
from a layer3 encoder's perspective the bit stream is primarily
a series of main_data() blocks, with header and side information
inserted at the proper locations to maintain framing. (See Figure A.7
in the IS).
*/
int
format_bitstream(lame_global_flags *gfp, int bitsPerFrame,
int l3_enc[2][2][576],
III_scalefac_t scalefac[2][2] )
{
lame_internal_flags *gfc=gfp->internal_flags;
int bits;
III_side_info_t *l3_side;
l3_side = &gfc->l3_side;
drain_into_ancillary(gfp,l3_side->resvDrain_pre);
encodeSideInfo2(gfp,bitsPerFrame);
bits = 8*gfc->sideinfo_len;
bits+=writeMainData(gfp,l3_enc,scalefac);
drain_into_ancillary(gfp,l3_side->resvDrain_post);
bits += l3_side->resvDrain_post;
l3_side->main_data_begin += (bitsPerFrame-bits)/8;
if ((l3_side->main_data_begin * 8) != gfc->ResvSize ) {
ERRORF(gfc,"bit reservoir error: \n"
"l3_side->main_data_begin: %i \n"
"Resvoir size: %i \n"
"resv drain (post) %i \n"
"resv drain (pre) %i \n"
"header and sideinfo: %i \n"
"data bits: %i \n"
"total bits: %i (remainder: %i) \n"
"bitsperframe: %i \n",
8*l3_side->main_data_begin,
gfc->ResvSize,
l3_side->resvDrain_post,
l3_side->resvDrain_pre,
8*gfc->sideinfo_len,
bits-l3_side->resvDrain_post-8*gfc->sideinfo_len,
bits, bits % 8,
bitsPerFrame
);
gfc->ResvSize = l3_side->main_data_begin*8;
};
assert(gfc->bs.totbit % 8 == 0);
if (gfc->bs.totbit > 1000000000 ) {
/* to avoid totbit overflow, (at 8h encoding at 128kbs) lets reset bit counter*/
int i;
for (i=0 ; i< MAX_HEADER_BUF ; ++i)
gfc->header[i].write_timing -= gfc->bs.totbit;
gfc->bs.totbit=0;
}
return 0;
}
int copy_buffer(unsigned char *buffer,int size,Bit_stream_struc *bs)
{
int minimum = bs->buf_byte_idx + 1;
if (minimum <= 0) return 0;
if (size!=0 && minimum>size) return -1; /* buffer is too small */
memcpy(buffer,bs->buf,minimum);
bs->buf_byte_idx = -1;
bs->buf_bit_idx = 0;
return minimum;
}
void init_bit_stream_w(lame_internal_flags *gfc)
{
gfc->bs.buf = (unsigned char *) malloc(BUFFER_SIZE);
gfc->bs.buf_size = BUFFER_SIZE;
gfc->h_ptr = gfc->w_ptr = 0;
gfc->header[gfc->h_ptr].write_timing = 0;
gfc->bs.buf_byte_idx = -1;
gfc->bs.buf_bit_idx = 0;
gfc->bs.totbit = 0;
}
/* end of bitstream.c */
|