Age | Commit message (Collapse) | Author |
|
To avoid a MAXMACH limit of 32 and make
txtflush into an array for the bitmap.
Provide portable macros for testing and clearing
the bits: needtxtflush(), donetxtflush().
On pc/pc64, define inittxtflush()/settxtflush()
as no-op macros, avoiding the storage overhead of
the txtflush array alltogether.
|
|
the page attribute table was initialized in mmuinit(), which is
too late for bootscreen(). So now we check for PAT support and
insert the write-combine entry early in cpuidentify().
this might have been the cause of some slow EFI framebuffers on
machines with overlapping or insufficient MTRR entries.
|
|
This replaces the memory map code for both pc and pc64
kernels with a unified implementation using the new
portable memory map code.
The main motivation is to be robust against broken
e820 memory maps by the bios and delay the Conf.mem[]
allocation after archinit(), so mp and acpi tables
can be reserved and excluded from user memory.
There are a few changes:
new memreserve() function has been added for archinit()
to reserve bios and acpi tables.
upareserve() has been replaced by upaalloc(), which now
has an address argument.
umbrwmalloc() and umbmalloc() have been replaced by
umballoc().
both upaalloc() and umballoc() return physical addresses
or -1 on error. the physical address -1 is now used as
a sentinel value instead of 0 when dealing with physical
addresses.
archmp and archacpi now always use vmap() to access
the bios tables and reserve the ranges. more overflow
checks have been added.
ramscan() has been rewritten using vmap().
to handle the population of kernel memory, pc and pc64
now have pmap() and punmap() functions to do permanent
mappings.
|
|
add PTECACHED bits
a portable SG_NOEXEC segment attribute was added to allow
non-executable (physical) segments. which will set the
PTENOEXEC bits for putmmu().
in the future, this can be used to make non-executable
stack / bss segments.
the SG_DEVICE attribute was added to distinguish between
mmio regions and uncached memory. only matterns on arm64.
on arm, theres the issue that PTEUNCACHED would have
no bits set when using the hardware bit definitions.
this is the reason bcm, kw, teg2 and omap kernels use
arteficial PTE constants. on zynq, the XN bit was used
as a hack to give PTEUNCACHED a non-zero value and when
the bit is clear then cache attributes where added to
the pte.
to fix this, PTECACHED constant was added.
the portable mmu code in fault.c will now explicitely set
PTECACHED bits for cached memory and PTEUNCACHED for
uncached memory. that way the hardware bit definitions
can be used everywhere.
|
|
move APBOOTSTRAP and TMPADDR to make space available for
boot parameters. which can become quite long such as *e820.
|
|
|
|
depending on kernel size)
we now do mapping of KZERO to ROUND(end, 4*MB) where
end needs not to be above 16MB. this allows for bigger
kernels.
|
|
|
|
the kernel uses fixed area (TSTKTOP, TSTKSIZ) of the address
space to temporarily map the new stack segment for exec. for
386 and arm, this area was right below the stack segment which
has the problem that the program can map arbitrary segments
there (even readonly).
alpha and ppc dont have this problem as they map the temporary
exec stack *above* the user reachable stack segement and segattach
prevents one from mapping anything above or overlaping the stack.
lots of arch code assumes USTKTOP being the end of userspace
address space and changing this to TSTKTOP would work, but results
in lots of hard to test changes.
instead, we'r going to map the temporary stack programmatically
finding a hole in the address space where to map it. we also lift
the size limitation for arguments and allow arguments to fill
the whole new stack segement.
the TSTKTOP and TSTKSIZ are not used anymore so they where removed.
references:
http://9fans.net/archive/2013/03/203
http://9fans.net/archive/2013/03/202
http://9fans.net/archive/2013/03/197
http://9fans.net/archive/2013/03/195
http://9fans.net/archive/2013/03/181
|
|
|
|
|
|
|
|
|
|
|